LEADER 04774nam 2201237z- 450 001 9910346671303321 005 20231214133554.0 010 $a3-03897-837-X 035 $a(CKB)4920000000094954 035 $a(oapen)https://directory.doabooks.org/handle/20.500.12854/60894 035 $a(EXLCZ)994920000000094954 100 $a20202102d2019 |y 0 101 0 $aeng 135 $aurmn|---annan 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aThioredoxin and Glutaredoxin Systems 210 $cMDPI - Multidisciplinary Digital Publishing Institute$d2019 215 $a1 electronic resource (280 p.) 311 $a3-03897-836-1 330 $aThis Special Issue features recent data concerning thioredoxins and glutaredoxins from various biological systems, including bacteria, mammals, and plants. Four of the sixteen articles are review papers that deal with the regulation of development of the effect of hydrogen peroxide and the interactions between oxidants and reductants, the description of methionine sulfoxide reductases, detoxification enzymes that require thioredoxin or glutaredoxin, and the response of plants to cold stress, respectively. This is followed by eleven research articles that focus on a reductant of thioredoxin in bacteria, a thioredoxin reductase, and a variety of plant and bacterial thioredoxins, including the m, f, o, and h isoforms and their targets. Various parameters are studied, including genetic, structural, and physiological properties of these systems. The redox regulation of monodehydroascorbate reductase, aminolevulinic acid dehydratase, and cytosolic isocitrate dehydrogenase could have very important consequences in plant metabolism. Also, the properties of the mitochondrial o-type thioredoxins and their unexpected capacity to bind iron?sulfur center (ISC) structures open new developments concerning the redox mitochondrial function and possibly ISC assembly in mitochondria. The final paper discusses interesting biotechnological applications of thioredoxin for breadmaking. 610 $aregeneration 610 $aposttranslational modification 610 $aH2O2 610 $achilling stress 610 $athioredoxin reductase 610 $aX-ray crystallography 610 $aphotosynthesis 610 $aChlamydomonas reinhardtii 610 $aprotein 610 $amonodehydroascorbate reductase 610 $amethionine sulfoxide 610 $acysteine reactivity 610 $asymbiosis 610 $aplant 610 $aMALDI-TOF mass spectrometry 610 $athioredoxins 610 $aredox homeostasis 610 $amethionine sulfoxide reductases 610 $aredox 610 $aredox signalling 610 $achloroplast 610 $aprotein-protein recognition 610 $acyanobacteria 610 $aspecificity 610 $awheat 610 $amethanoarchaea 610 $astress 610 $aredox regulation 610 $adough rheology 610 $amethionine sulfoxide reductase 610 $aelectrostatic surface 610 $aCalvin cycle 610 $aALAD 610 $ametazoan 610 $aArabidopsis thaliana 610 $abaking 610 $acold temperature 610 $amacromolecular crystallography 610 $aprotein oxidation 610 $afunction 610 $amethionine oxidation 610 $adevelopment 610 $airon-sulfur cluster 610 $atetrapyrrole biosynthesis 610 $alegume plant 610 $aglutathionylation 610 $aCalvin-Benson cycle 610 $aadult stem cells 610 $acarbon fixation 610 $aplastidial 610 $amethionine 610 $aredox active site 610 $aROS 610 $awater stress 610 $aNADPH 610 $arepair 610 $aphysiological function 610 $asignaling 610 $athioredoxin 610 $aantioxidants 610 $aglutathione 610 $aglutaredoxin 610 $aflavin 610 $aIsocitrate dehydrogenase 610 $athiol redox network 610 $aageing 610 $adisulfide 610 $amitochondria 610 $achlorophyll 610 $aproteomic 610 $acysteine alkylation 610 $aferredoxin-thioredoxin reductase 610 $aSAXS 610 $aregulation 610 $aoxidized protein repair 610 $aascorbate 610 $aredox control 610 $anitrosylation 700 $aZaffagnini$b Mirko$4auth$01311267 702 $aJacquot$b Jean-Pierre$4auth 906 $aBOOK 912 $a9910346671303321 996 $aThioredoxin and Glutaredoxin Systems$93030074 997 $aUNINA