LEADER 00862nam0-2200277 --450 001 9910339155803321 005 20190918101647.0 010 $a978-88-7578-690-8 100 $a20190918d2017----kmuy0itay5050 ba 101 1 $aita$ceng 102 $aIT 105 $a 001yy 200 1 $aImmersi nelle storie$eil mestiere di raccontare nell'era di Internet$fFrank Rose$gtraduzione di Antonello Guerrera 210 $aTorino$cCodice$d2017 215 $aXVIII, 286 p.$cill.$d21 cm 610 0 $aInternet$aDiffusione$aAspetti socio-culturali 676 $a303.483302854678$v23$zita 700 1$aRose,$bFrank$0766916 702 1$aGuerrera,$bAntonello 801 0$aIT$bUNINA$gREICAT$2UNIMARC 901 $aBK 912 $a9910339155803321 952 $aIX B 209$b1197/2019$fFSPBC 959 $aFSPBC 996 $aImmersi nelle storie$91560883 997 $aUNINA LEADER 03730nam 22006975 450 001 9910783382603321 005 20211005114646.0 010 $a0-306-48045-X 024 7 $a10.1007/b101970 035 $a(CKB)1000000000024314 035 $a(DE-He213)978-0-306-48045-4 035 $a(MiAaPQ)EBC3035915 035 $a(MiAaPQ)EBC197664 035 $a(Au-PeEL)EBL197664 035 $a(OCoLC)614599810 035 $a(PPN)237933985 035 $a(EXLCZ)991000000000024314 100 $a20100301d2002 u| 0 101 0 $aeng 135 $aurnn#008mamaa 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aFoundations of Bilevel Programming$b[electronic resource] /$fby Stephan Dempe 210 1$aBoston, MA :$cSpringer US,$d2002. 215 $a1 online resource (VIII, 309 p.) 225 1 $aNonconvex Optimization and Its Applications,$x1571-568X ;$v61 311 $a1-4020-0631-4 327 $aApplications -- Linear Bilevel Problems -- Parametric Optimization -- Optimality Conditions -- Solution Algorithms -- Nonunique Lower Level Solution -- Discrete Bilevel Problems. 330 $aBilevel programming problems are hierarchical optimization problems where the constraints of one problem (the so-called upper level problem) are defined in part by a second parametric optimization problem (the lower level problem). If the lower level problem has a unique optimal solution for all parameter values, this problem is equivalent to a one-level optimization problem having an implicitly defined objective function. Special emphasize in the book is on problems having non-unique lower level optimal solutions, the optimistic (or weak) and the pessimistic (or strong) approaches are discussed. The book starts with the required results in parametric nonlinear optimization. This is followed by the main theoretical results including necessary and sufficient optimality conditions and solution algorithms for bilevel problems. Stationarity conditions can be applied to the lower level problem to transform the optimistic bilevel programming problem into a one-level problem. Properties of the resulting problem are highlighted and its relation to the bilevel problem is investigated. Stability properties, numerical complexity, and problems having additional integrality conditions on the variables are also discussed. Audience: Applied mathematicians and economists working in optimization, operations research, and economic modelling. Students interested in optimization will also find this book useful. 410 0$aNonconvex Optimization and Its Applications,$x1571-568X ;$v61 606 $aMathematics 606 $aOperations research 606 $aDecision making 606 $aMathematical optimization 606 $aCalculus of variations 606 $aMathematics 606 $aCalculus of Variations and Optimal Control; Optimization 606 $aOperation Research/Decision Theory 606 $aOptimization 615 0$aMathematics. 615 0$aOperations research. 615 0$aDecision making. 615 0$aMathematical optimization. 615 0$aCalculus of variations. 615 14$aMathematics. 615 24$aCalculus of Variations and Optimal Control; Optimization. 615 24$aOperation Research/Decision Theory. 615 24$aOptimization. 676 $a515.64 686 $a90C30$2msc 686 $a34-01$2msc 700 $aDempe$b Stephan$0846416 712 02$aSpringerLink (Online service) 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910783382603321 996 $aFoundations of Bilevel Programming$93703688 997 $aUNINA