LEADER 00812nas a2200253 i 4500 001 991002521409707536 005 20231114121032.0 008 011205m19589999 || | |ger 022 $a0007-3075 035 $ab11671828-39ule_inst 035 $aPERLE002136$9ExL 080 $aCDU 7 080 $aCDU 792 229 4$aDie Bühne 245 04$aDie Bühne :$bDas österreichische Theatermagazine. - 1958- 260 $aWien,$c1958- 591 $aCodice CNR: P 00051942 592 $aLE021 1961-1968;1973; lac.: 1961-1963;1965;1968;1973; 907 $a.b11671828$b13-05-19$c08-07-02 912 $a991002521409707536 945 $aLE021$g1$lle021$o-$pE0.00$q-$rn$so $t18$u0$v0$w0$x0$y.i11897405$z08-07-02 996 $aBühne$9891947 997 $aUNISALENTO 998 $ale021$b01-01-01$cs$da $e-$fger$gxx $h4$i1 LEADER 02806nam 22004575 450 001 9910338258503321 005 20200707003858.0 010 $a3-030-11763-4 024 7 $a10.1007/978-3-030-11763-4 035 $a(CKB)4100000007992520 035 $a(MiAaPQ)EBC5754895 035 $a(DE-He213)978-3-030-11763-4 035 $a(PPN)235669180 035 $a(EXLCZ)994100000007992520 100 $a20190416d2019 u| 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aLinear and Quasilinear Parabolic Problems $eVolume II: Function Spaces /$fby Herbert Amann 205 $a1st ed. 2019. 210 1$aCham :$cSpringer International Publishing :$cImprint: Birkhäuser,$d2019. 215 $a1 online resource (476 pages) 225 1 $aMonographs in Mathematics,$x1017-0480 ;$v106 311 $a3-030-11762-6 320 $aIncludes bibliographical references and index. 327 $aRestriction-Extension Pairs -- Sequence Spaces -- Anisotropy -- Classical Spaces -- Besov Spaces -- Intrinsic Norms, Slobodeckii and Hölder Spaces -- Bessel Potential Spaces -- Triebel-Lizorkin Spaces -- Point-Wise Multiplications -- Compactness -- Parameter-Dependent Spaces. 330 $aThis volume discusses an in-depth theory of function spaces in an Euclidean setting, including several new features, not previously covered in the literature. In particular, it develops a unified theory of anisotropic Besov and Bessel potential spaces on Euclidean corners, with infinite-dimensional Banach spaces as targets. It especially highlights the most important subclasses of Besov spaces, namely Slobodeckii and Hölder spaces. In this case, no restrictions are imposed on the target spaces, except for reflexivity assumptions in duality results. In this general setting, the author proves sharp embedding, interpolation, and trace theorems, point-wise multiplier results, as well as Gagliardo-Nirenberg estimates and generalizations of Aubin-Lions compactness theorems. The results presented pave the way for new applications in situations where infinite-dimensional target spaces are relevant ? in the realm of stochastic differential equations, for example. 410 0$aMonographs in Mathematics,$x1017-0480 ;$v106 606 $aFunctional analysis 606 $aFunctional Analysis$3https://scigraph.springernature.com/ontologies/product-market-codes/M12066 615 0$aFunctional analysis. 615 14$aFunctional Analysis. 676 $a515.353 676 $a515.3534 700 $aAmann$b Herbert$4aut$4http://id.loc.gov/vocabulary/relators/aut$041108 906 $aBOOK 912 $a9910338258503321 996 $aLinear and Quasilinear Parabolic Problems$9349425 997 $aUNINA