LEADER 03906nam 22008055 450 001 9910338254803321 005 20200701050417.0 010 $a9783030140533 010 $a3030140539 024 7 $a10.1007/978-3-030-14053-3 035 $a(CKB)4100000008160693 035 $a(DE-He213)978-3-030-14053-3 035 $a(MiAaPQ)EBC5919474 035 $a(PPN)236522418 035 $a(MiAaPQ)EBC31886880 035 $a(Au-PeEL)EBL31886880 035 $a(OCoLC)1103468530 035 $a(EXLCZ)994100000008160693 100 $a20190515d2019 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aUndergraduate Algebra $eA Unified Approach /$fby Matej Bre?ar 205 $a1st ed. 2019. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2019. 215 $a1 online resource (XXIV, 316 p. 17 illus.) 225 1 $aSpringer Undergraduate Mathematics Series,$x1615-2085 311 08$a9783030140526 311 08$a3030140520 327 $aPreface -- 1 Glossary of Basic Algebraic Structures -- 2 Examples of Groups and Rings -- 3 Homomorphisms -- 4 Quotient Structures -- 5 Commutative Rings -- 6 Finite Groups -- 7 Field Extensions -- Frequently Used Symbols -- Index. . 330 $aThis textbook offers an innovative approach to abstract algebra, based on a unified treatment of similar concepts across different algebraic structures. This makes it possible to express the main ideas of algebra more clearly and to avoid unnecessary repetition. The book consists of two parts: The Language of Algebra and Algebra in Action. The unified approach to different algebraic structures is a primary feature of the first part, which discusses the basic notions of algebra at an elementary level. The second part is mathematically more complex, covering topics such as the Sylow theorems, modules over principal integral domains, and Galois theory. Intended for an undergraduate course or for self-study, the book is written in a readable, conversational style, is rich in examples, and contains over 700 carefully selected exercises. 410 0$aSpringer Undergraduate Mathematics Series,$x1615-2085 606 $aAssociative rings 606 $aRings (Algebra) 606 $aCommutative algebra 606 $aCommutative rings 606 $aAlgebra 606 $aField theory (Physics) 606 $aGroup theory 606 $aAlgebras, Linear 606 $aAssociative Rings and Algebras$3https://scigraph.springernature.com/ontologies/product-market-codes/M11027 606 $aCommutative Rings and Algebras$3https://scigraph.springernature.com/ontologies/product-market-codes/M11043 606 $aField Theory and Polynomials$3https://scigraph.springernature.com/ontologies/product-market-codes/M11051 606 $aGroup Theory and Generalizations$3https://scigraph.springernature.com/ontologies/product-market-codes/M11078 606 $aLinear Algebra$3https://scigraph.springernature.com/ontologies/product-market-codes/M11100 615 0$aAssociative rings. 615 0$aRings (Algebra) 615 0$aCommutative algebra. 615 0$aCommutative rings. 615 0$aAlgebra. 615 0$aField theory (Physics) 615 0$aGroup theory. 615 0$aAlgebras, Linear. 615 14$aAssociative Rings and Algebras. 615 24$aCommutative Rings and Algebras. 615 24$aField Theory and Polynomials. 615 24$aGroup Theory and Generalizations. 615 24$aLinear Algebra. 676 $a512.9 676 $a512 700 $aBre?ar$b Matej$4aut$4http://id.loc.gov/vocabulary/relators/aut$0721264 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910338254803321 996 $aUndergraduate Algebra$91733812 997 $aUNINA