LEADER 01126cam0-2200373---450- 001 990004300390403321 005 20080125094405.0 010 $a3.506.74121.7 035 $a000430039 035 $aFED01000430039 035 $a(Aleph)000430039FED01 035 $a000430039 100 $a19990604d1984----km-y0itay50------ba 101 0 $ager 102 $aDE 105 $ay-------001yy 200 1 $aVon der Aufklärung zum Historismus$ezum Strukturwandel des historischen Denkens$fHorst Walter Blanke, Jörn Rüsen (hrsg.) 210 $aPadeborn ; München$cSchöningh$d1984 215 $a324 p.$d23 cm 225 1 $aHistorisch-Politische Diskurse$v1 610 0 $aFilosofia della storia$aSec. 18.-19. 610 0 $aStoricismo$aSaggi 610 0 $aStoriografia$aSec. 18.-19. 676 $a190 676 $a901 702 1$aBlanke,$bHorst Walter 702 1$aRüsen,$bJörn$f<1938- > 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990004300390403321 952 $a901 BLA 2$b4865 Bibl.$fFLFBC 959 $aFLFBC 996 $aVon der Aufklärung zum Historismus$9488879 997 $aUNINA LEADER 03531nam 22005415 450 001 9910338254503321 005 20200702104105.0 010 $a3-030-15675-3 024 7 $a10.1007/978-3-030-15675-6 035 $a(CKB)4100000008160679 035 $a(DE-He213)978-3-030-15675-6 035 $a(MiAaPQ)EBC5923370 035 $a(PPN)236521845 035 $a(EXLCZ)994100000008160679 100 $a20190507d2019 u| 0 101 0 $aeng 135 $aurnn#008mamaa 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aSiegel Modular Forms $eA Classical and Representation-Theoretic Approach /$fby Ameya Pitale 205 $a1st ed. 2019. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2019. 215 $a1 online resource (IX, 138 p. 112 illus.) 225 1 $aLecture Notes in Mathematics,$x0075-8434 ;$v2240 311 $a3-030-15674-5 320 $aIncludes bibliographical references and index. 327 $aIntroduction -- Lecture 1:Introduction to Siegel modular forms -- Lecture 2: Examples -- Lecture 3: Hecke Theory and L-functions -- Lecture 4: Non-vanishing of primitive Fourier coefficients and applications -- Lecture 5: Applications of properties of L-functions -- Lecture 6: Cuspidal automorphic representations corresponding to Siegel modular forms -- Lecture 7: Local representation theory of GSp4(?p) -- Lecture 8: Bessel models and applications -- Lecture 9: Analytic and arithmetic properties of GSp4 x GL2 L-functions -- Lecture 10: Integral representation of the standard L-function. 330 $aThis monograph introduces two approaches to studying Siegel modular forms: the classical approach as holomorphic functions on the Siegel upper half space, and the approach via representation theory on the symplectic group. By illustrating the interconnections shared by the two, this book fills an important gap in the existing literature on modular forms. It begins by establishing the basics of the classical theory of Siegel modular forms, and then details more advanced topics. After this, much of the basic local representation theory is presented. Exercises are featured heavily throughout the volume, the solutions of which are helpfully provided in an appendix. Other topics considered include Hecke theory, Fourier coefficients, cuspidal automorphic representations, Bessel models, and integral representation. Graduate students and young researchers will find this volume particularly useful. It will also appeal to researchers in the area as a reference volume. Some knowledge of GL(2) theory is recommended, but there are a number of appendices included if the reader is not already familiar. 410 0$aLecture Notes in Mathematics,$x0075-8434 ;$v2240 606 $aNumber theory 606 $aGroup theory 606 $aNumber Theory$3https://scigraph.springernature.com/ontologies/product-market-codes/M25001 606 $aGroup Theory and Generalizations$3https://scigraph.springernature.com/ontologies/product-market-codes/M11078 615 0$aNumber theory. 615 0$aGroup theory. 615 14$aNumber Theory. 615 24$aGroup Theory and Generalizations. 676 $a512.73 676 $a512.73 700 $aPitale$b Ameya$4aut$4http://id.loc.gov/vocabulary/relators/aut$0769116 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910338254503321 996 $aSiegel Modular Forms$91567631 997 $aUNINA