LEADER 02868nam 22005655 450 001 9910338253803321 005 20200706003550.0 010 $a3-030-18156-1 024 7 $a10.1007/978-3-030-18156-7 035 $a(CKB)4100000008280491 035 $a(MiAaPQ)EBC5780328 035 $a(DE-He213)978-3-030-18156-7 035 $a(PPN)236523546 035 $a(EXLCZ)994100000008280491 100 $a20190525d2019 u| 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aEndotrivial Modules /$fby Nadia Mazza 205 $a1st ed. 2019. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2019. 215 $a1 online resource (129 pages) 225 1 $aSpringerBriefs in Mathematics,$x2191-8198 311 $a3-030-18155-3 327 $a1 Introduction -- 2 Endotrivial modules -- 3 Classifying endotrivial modules -- 4 The torsionfree part of the group of endotrivial modules -- 5 Torsion endotrivial modules -- 6 Endotrivial modules for Very Important Groups. 330 $aThis is an in-depth report on the endotrivial modules, an important class of modular representations for finite groups. Following the historical development of the theory, the book starts with a review of the necessary definitions and some key examples. The main results obtained using traditional techniques are then presented, followed by more recent results such as the work of Grodal inspired by algebraic topology. In the last part of the book original methods are applied to obtain the group of endotrivial modules for certain very important groups. An accessible reference collecting half a century of research on endotrivial modules, this book will be of interest to researchers in algebra. 410 0$aSpringerBriefs in Mathematics,$x2191-8198 606 $aGroup theory 606 $aCategory theory (Mathematics) 606 $aHomological algebra 606 $aK-theory 606 $aGroup Theory and Generalizations$3https://scigraph.springernature.com/ontologies/product-market-codes/M11078 606 $aCategory Theory, Homological Algebra$3https://scigraph.springernature.com/ontologies/product-market-codes/M11035 606 $aK-Theory$3https://scigraph.springernature.com/ontologies/product-market-codes/M11086 615 0$aGroup theory. 615 0$aCategory theory (Mathematics). 615 0$aHomological algebra. 615 0$aK-theory. 615 14$aGroup Theory and Generalizations. 615 24$aCategory Theory, Homological Algebra. 615 24$aK-Theory. 676 $a512.55 676 $a512.2 700 $aMazza$b Nadia$4aut$4http://id.loc.gov/vocabulary/relators/aut$0781319 906 $aBOOK 912 $a9910338253803321 996 $aEndotrivial Modules$91732449 997 $aUNINA