LEADER 01278nam--2200397---450- 001 990003520070203316 005 20110408120602.0 010 $a978-88-89579-79-4 035 $a000352007 035 $aUSA01000352007 035 $a(ALEPH)000352007USA01 035 $a000352007 100 $a20110408d2009----km-y0itay50------ba 101 2 $aita$alat 102 $aIT 105 $a||||||||001yy 200 1 $aRimedi all'una e all'altra fortuna$fFrancesco Petrarca$gintroduzione, commento e cura di Enrico Fenzi$gtraduzione di Gerardo Fortunato e Luigi Alfinito 210 $aNapoli$cLa scuola di Pitagora$d2009 215 $a335 p.$d21 cm 225 2 $aUmanesimo e Rinascimento$v1 300 $aTesto originale a fronte 410 0$12001$aUmanesimo e Rinascimento$v1 676 $a878.03 700 1$aPETRARCA,$bFrancesco$f<1304-1374>$0292779 702 1$aFENZI,$bEnrico 702 1$aFORTUNATO,$bGerardo 702 1$aALFINITO,$bLuigi 801 0$aIT$bsalbc$gISBD 912 $a990003520070203316 951 $aVI.3.A. 641$b220487 L.M.$cVI.3.A.$d00295776 959 $aBK 969 $aUMA 979 $aPASSARO$b90$c20110408$lUSA01$h1127 979 $aPASSARO$b90$c20110408$lUSA01$h1206 996 $aDe remediis utriusque fortunae$942921 997 $aUNISA LEADER 03232nam 22006735 450 001 9910338253203321 005 20250325105703.0 010 $a9783030135478 010 $a3030135470 024 7 $a10.1007/978-3-030-13547-8 035 $a(CKB)4100000007881291 035 $a(DE-He213)978-3-030-13547-8 035 $a(MiAaPQ)EBC5922969 035 $a(PPN)235668257 035 $a(EXLCZ)994100000007881291 100 $a20190409d2019 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aStochastic Geometry $eModern Research Frontiers /$fedited by David Coupier 205 $a1st ed. 2019. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2019. 215 $a1 online resource (XIII, 232 p. 71 illus., 27 illus. in color.) 225 1 $aLecture Notes in Mathematics,$x1617-9692 ;$v2237 311 08$a9783030135461 311 08$a3030135462 320 $aIncludes bibliographical references. 330 $aThis volume offers a unique and accessible overview of the most active fields in Stochastic Geometry, up to the frontiers of recent research. Since 2014, the yearly meeting of the French research structure GDR GeoSto has been preceded by two introductory courses. This book contains five of these introductory lectures. The first chapter is a historically motivated introduction to Stochastic Geometry which relates four classical problems (the Buffon needle problem, the Bertrand paradox, the Sylvester four-point problem and the bicycle wheel problem) to current topics. The remaining chapters give an application motivated introduction to contemporary Stochastic Geometry, each one devoted to a particular branch of the subject: understanding spatial point patterns through intensity and conditional intensities; stochastic methods for image analysis; random fields and scale invariance; and the theory of Gibbs point processes. Exposing readers to a rich theory,this book will encourage further exploration of the subject and its wide applications. . 410 0$aLecture Notes in Mathematics,$x1617-9692 ;$v2237 606 $aProbabilities 606 $aStatistics 606 $aImage processing$xDigital techniques 606 $aComputer vision 606 $aMathematical physics 606 $aProbability Theory 606 $aStatistical Theory and Methods 606 $aComputer Imaging, Vision, Pattern Recognition and Graphics 606 $aMathematical Physics 615 0$aProbabilities. 615 0$aStatistics. 615 0$aImage processing$xDigital techniques. 615 0$aComputer vision. 615 0$aMathematical physics. 615 14$aProbability Theory. 615 24$aStatistical Theory and Methods. 615 24$aComputer Imaging, Vision, Pattern Recognition and Graphics. 615 24$aMathematical Physics. 676 $a519.2 676 $a519.22 702 $aCoupier$b David$4edt$4http://id.loc.gov/vocabulary/relators/edt 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910338253203321 996 $aStochastic geometry$960031 997 $aUNINA