LEADER 04026nam 22006375 450 001 9910337644503321 005 20200702013700.0 010 $a3-030-00740-5 024 7 $a10.1007/978-3-030-00740-9 035 $a(CKB)4100000007110967 035 $a(MiAaPQ)EBC5607440 035 $a(DE-He213)978-3-030-00740-9 035 $a(PPN)231461763 035 $a(EXLCZ)994100000007110967 100 $a20181029d2019 u| 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aQuadrature RC?Oscillators $eThe van der Pol Approach /$fby João Carlos Ferreira de Almeida Casaleiro, Luís Augusto Bica Gomes Oliveira, Igor M. Filanovsky 205 $a1st ed. 2019. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2019. 215 $a1 online resource (166 pages) 225 1 $aAnalog Circuits and Signal Processing,$x1872-082X 311 $a3-030-00739-1 327 $aIntroduction -- Sinusoidal Oscillators -- van der Pol Oscillator -- Injection Locking -- Active coupling RC?oscillator -- Capacitive coupling RC-oscillator -- Two-integrator oscillator -- Conclusions. 330 $aThis book presents a tutorial review of van der Pol model, a universal oscillator model for the analysis of modern RC?oscillators in weak and strong nonlinear regimes. A detailed analysis of the injection locking in van der Pol oscillators is also presented. The relation between the van der Pol parameters and several circuit implementations in CMOS nanotechnology is given, showing that this theory is very useful in the optimization of oscillator key parameters, such as: frequency, amplitude and phase relationship. The authors discuss three different examples: active coupling RC?oscillators, capacitive coupling RC?oscillators, and two-integrator oscillator working in the sinusoidal regime. · Provides a detailed tutorial on the van der Pol oscillator model, which can be the basis for the analysis of modern RC?oscillators in weak and strong nonlinear regimes; · Demonstrations the relationship between the van der Pol parameters and several circuit implementations in CMOS nanotechnology, showing that this theory is a powerful tool in the optimization of key oscillator parameters; · Provides three circuit prototypes implemented in modern CMOS nanotechnology in the GHz range, with applications in low area, low power, low cost, wireless sensor network (WSN) applications (e.g. IoT, BLE). 410 0$aAnalog Circuits and Signal Processing,$x1872-082X 606 $aElectronic circuits 606 $aElectronics 606 $aMicroelectronics 606 $aSignal processing 606 $aImage processing 606 $aSpeech processing systems 606 $aCircuits and Systems$3https://scigraph.springernature.com/ontologies/product-market-codes/T24068 606 $aElectronics and Microelectronics, Instrumentation$3https://scigraph.springernature.com/ontologies/product-market-codes/T24027 606 $aSignal, Image and Speech Processing$3https://scigraph.springernature.com/ontologies/product-market-codes/T24051 615 0$aElectronic circuits. 615 0$aElectronics. 615 0$aMicroelectronics. 615 0$aSignal processing. 615 0$aImage processing. 615 0$aSpeech processing systems. 615 14$aCircuits and Systems. 615 24$aElectronics and Microelectronics, Instrumentation. 615 24$aSignal, Image and Speech Processing. 676 $a621.381533 676 $a621.381533 700 $aCasaleiro$b João Carlos Ferreira de Almeida$4aut$4http://id.loc.gov/vocabulary/relators/aut$0864697 702 $aOliveira$b Luís Augusto Bica Gomes$4aut$4http://id.loc.gov/vocabulary/relators/aut 702 $aFilanovsky$b Igor M$4aut$4http://id.loc.gov/vocabulary/relators/aut 906 $aBOOK 912 $a9910337644503321 996 $aQuadrature RC?Oscillators$91930067 997 $aUNINA