LEADER 03645nam 22005775 450 001 9910337582103321 005 20200704134900.0 010 $a3-030-04480-7 024 7 $a10.1007/978-3-030-04480-0 035 $a(CKB)4100000007598331 035 $a(MiAaPQ)EBC5660334 035 $a(DE-He213)978-3-030-04480-0 035 $a(PPN)23380031X 035 $a(EXLCZ)994100000007598331 100 $a20190130d2019 u| 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aElliptic Integrals, Elliptic Functions and Modular Forms in Quantum Field Theory /$fedited by Johannes Blümlein, Carsten Schneider, Peter Paule 205 $a1st ed. 2019. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2019. 215 $a1 online resource (511 pages) 225 1 $aTexts & Monographs in Symbolic Computation, A Series of the Research Institute for Symbolic Computation, Johannes Kepler University, Linz, Austria,$x0943-853X 311 $a3-030-04479-3 327 $aGraph complexes and Cutkosky rules -- Differential equations and dispersion relations for Feynman amplitudes with elliptic functions -- Elliptic integrals and the two-loop ttbar production in QCD -- Solutions of 2nd and 3rd order differential equations with more singularities -- Analytic continuation of Feynman diagrams with elliptic solutions -- Twisted elliptic multiple zeta values and non-planar one-loop open-string amplitudes -- Genus one superstring amplitudes and modular forms -- Difference field methods in Feynman diagram calculations -- Feynman integrals and iterated integrals of modular forms -- Iterated elliptic and hypergeometric integrals for Feynman diagrams. - Feynman integrals, L-series and Kloosterman moments. 330 $aThis book includes review articles in the field of elliptic integrals, elliptic functions and modular forms intending to foster the discussion between theoretical physicists working on higher loop calculations and mathematicians working in the field of modular forms and functions and analytic solutions of higher order differential and difference equations. . 410 0$aTexts & Monographs in Symbolic Computation, A Series of the Research Institute for Symbolic Computation, Johannes Kepler University, Linz, Austria,$x0943-853X 606 $aComputer science?Mathematics 606 $aQuantum field theory 606 $aString theory 606 $aMathematical physics 606 $aSymbolic and Algebraic Manipulation$3https://scigraph.springernature.com/ontologies/product-market-codes/I17052 606 $aQuantum Field Theories, String Theory$3https://scigraph.springernature.com/ontologies/product-market-codes/P19048 606 $aMathematical Physics$3https://scigraph.springernature.com/ontologies/product-market-codes/M35000 615 0$aComputer science?Mathematics. 615 0$aQuantum field theory. 615 0$aString theory. 615 0$aMathematical physics. 615 14$aSymbolic and Algebraic Manipulation. 615 24$aQuantum Field Theories, String Theory. 615 24$aMathematical Physics. 676 $a515.983 702 $aBlümlein$b Johannes$4edt$4http://id.loc.gov/vocabulary/relators/edt 702 $aSchneider$b Carsten$4edt$4http://id.loc.gov/vocabulary/relators/edt 702 $aPaule$b Peter$4edt$4http://id.loc.gov/vocabulary/relators/edt 906 $aBOOK 912 $a9910337582103321 996 $aElliptic Integrals, Elliptic Functions and Modular Forms in Quantum Field Theory$92533042 997 $aUNINA