LEADER 01085nam 2200337 450 001 9910326660203321 005 20231214153623.0 010 $a1-5044-5846-X 035 $a(CKB)4100000008419307 035 $a(NjHacI)994100000008419307 035 $a(EXLCZ)994100000008419307 100 $a20231214d2019 uy 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aIEC/IEEE 60214-2 $e2019 : IEEE/IEC International Standard for TAP-changers-Part 2: Application guidelines /$fInstitute of Electrical and Electronics Engineers 210 1$a[Place of publication not identified] :$cIEEE,$d2019. 215 $a1 online resource (34 pages) 517 $a60214-2-2019 - IEEE/IEC International Standard for TAP-changers --Part 2 517 $aIEC/IEEE 60214-2 606 $aBridge circuits 615 0$aBridge circuits. 676 $a621.37 801 0$bNjHacI 801 1$bNjHacl 906 $aDOCUMENT 912 $a9910326660203321 996 $aIEC$92574023 997 $aUNINA LEADER 01178nam2 22002773i 450 001 VAN00113125 005 20240806100748.56 010 $a978-88-694-1376-8 100 $a20171229d2014 |0itac50 ba 101 $aita 102 $aIT 105 $a|||| ||||| 200 1 $aˆ1: La ‰pena carceraria$e(anno accademico 2011/2012)$fTullio Padovani 210 $aPisa$cPisa University Press$d2014 215 $a382 p.$d24 cm. 461 1$1001VAN00113119$12001 $aGiustizia criminale$eradici, sentieri, dintorni, periferie di un sistema assente$fTullio Padovani$1210 $aPisa$cPisa University Press$1215 $avolumi$d24 cm.$v1 606 $aDiritto penale$xItalia$3VANC030833$2SG 620 $dPisa$3VANL000008 700 1$aPadovani$bTullio$3VANV001911$0140402 712 $aPisa university $3VANV114298$4650 801 $aIT$bSOL$c20240906$gRICA 899 $aBIBLIOTECA DEL DIPARTIMENTO DI GIURISPRUDENZA$1IT-CE0105$2VAN00 912 $aVAN00113125 950 $aBIBLIOTECA DEL DIPARTIMENTO DI GIURISPRUDENZA$d00CONS XIV.Eb.366 1 $e00UBG2413 20171229 996 $aPena carceraria$91521030 997 $aUNICAMPANIA LEADER 02012nam0 2200421 i 450 001 VAN00124467 005 20250124103758.858 017 70$2N$a9783662557747 100 $a20191018d2018 |0itac50 ba 101 $aeng 102 $aDE 105 $a|||| ||||| 200 1 $aMathematical Physics: Classical Mechanics$fAndreas Knauf 210 $aBerlin$cSpringer$d2018 215 $axiv, 683 p.$cill.$d24 cm 410 1$1001VAN00104561$12001 $aUnitext. La matematica per il 3+2$1210 $aMilano [etc.]$cSpringer$d1988-$v109 500 1$3VAN00124469$aMathematische Physik: Klassische Mechanik$91779198 606 $a37-XX$xDynamical systems and ergodic theory [MSC 2020]$3VANC020363$2MF 606 $a37J40$xPerturbations of finite-dimensional Hamiltonian systems, normal forms, small divisors, KAM theory, Arnol'd diffusion [MSC 2020]$3VANC020698$2MF 606 $a37Jxx$xDynamical aspects of finite-dimensional Hamiltonian and Lagrangian systems [MSC 2020]$3VANC021391$2MF 606 $a70-XX$xMechanics of particles and systems [MSC 2020]$3VANC021390$2MF 610 $aClassical mechanics$9KW:K 610 $aDynamical systems$9KW:K 610 $aErgodic theory$9KW:K 610 $aHamiltonian Dynamics$9KW:K 610 $aSpecial Relativity$9KW:K 610 $aSymplectic geometry$9KW:K 620 $dBerlin$3VANL000066 700 1$aKnauf$bAndreas$3VANV095908$053234 712 $aSpringer $3VANV108073$4650 801 $aIT$bSOL$c20251024$gRICA 856 4 $uhttp://doi.org/10.1007/978-3-662-55774-7$zE-book ? Accesso al full-text attraverso riconoscimento IP di Ateneo, proxy e/o Shibboleth 899 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$1IT-CE0120$2VAN08 912 $fN 912 $aVAN00124467 950 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$d08DLOAD e-book 1238 $e08eMF1238 20191018 996 $aMathematische Physik : Klassische Mechanik$91779198 997 $aUNICAMPANIA