LEADER 03536nam 22006015 450 001 9910311936503321 005 20200706121239.0 010 $a3-319-99930-3 024 7 $a10.1007/978-3-319-99930-2 035 $a(CKB)4100000007656543 035 $a(DE-He213)978-3-319-99930-2 035 $a(MiAaPQ)EBC6310546 035 $a(PPN)235001589 035 $a(EXLCZ)994100000007656543 100 $a20190215d2018 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aComputational Quantum Mechanics$b[electronic resource] /$fby Joshua Izaac, Jingbo Wang 205 $a1st ed. 2018. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2018. 215 $a1 online resource (XIII, 494 p. 1 illus.) 225 1 $aUndergraduate Lecture Notes in Physics,$x2192-4791 311 $a3-319-99929-X 327 $aPart I Scientific programming: an introduction for physicists: Numbers and precision -- Fortran -- Python -- Part II Numerical methods for quantum physics: Finding roots -- Differentiation and initial value problems -- Numerical integration -- The eigenvalue problem -- The Fourier transform -- PART III Solving the Schrödinger equation: One dimension -- Higher dimensions and basic techniques -- Time propagation -- Central potentials -- Multi-electron systems -- Exercises. 330 $aQuantum mechanics undergraduate courses mostly focus on systems with known analytical solutions; the finite well, simple Harmonic, and spherical potentials. However, most problems in quantum mechanics cannot be solved analytically. This textbook introduces the numerical techniques required to tackle problems in quantum mechanics, providing numerous examples en route. No programming knowledge is required ? an introduction to both Fortran and Python is included, with code examples throughout. With a hands-on approach, numerical techniques covered in this book include differentiation and integration, ordinary and differential equations, linear algebra, and the Fourier transform. By completion of this book, the reader will be armed to solve the Schro?dinger equation for arbitrarily complex potentials, and for single and multi-electron systems. 410 0$aUndergraduate Lecture Notes in Physics,$x2192-4791 606 $aQuantum physics 606 $aPhysics 606 $aAtomic structure   606 $aMolecular structure  606 $aQuantum Physics$3https://scigraph.springernature.com/ontologies/product-market-codes/P19080 606 $aNumerical and Computational Physics, Simulation$3https://scigraph.springernature.com/ontologies/product-market-codes/P19021 606 $aAtomic/Molecular Structure and Spectra$3https://scigraph.springernature.com/ontologies/product-market-codes/P24017 615 0$aQuantum physics. 615 0$aPhysics. 615 0$aAtomic structure  . 615 0$aMolecular structure . 615 14$aQuantum Physics. 615 24$aNumerical and Computational Physics, Simulation. 615 24$aAtomic/Molecular Structure and Spectra. 676 $a530.12 700 $aIzaac$b Joshua$4aut$4http://id.loc.gov/vocabulary/relators/aut$0833961 702 $aWang$b Jingbo$4aut$4http://id.loc.gov/vocabulary/relators/aut 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910311936503321 996 $aComputational Quantum Mechanics$92494446 997 $aUNINA