LEADER 04828nam 22006975 450 001 9910309860103321 005 20251113194831.0 010 $a3-030-01959-4 024 7 $a10.1007/978-3-030-01959-4 035 $a(CKB)4100000007587405 035 $a(MiAaPQ)EBC5649660 035 $a(DE-He213)978-3-030-01959-4 035 $a(PPN)233800611 035 $a(EXLCZ)994100000007587405 100 $a20190126d2018 u| 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aNumerical Methods for Optimal Control Problems /$fedited by Maurizio Falcone, Roberto Ferretti, Lars Grüne, William M. McEneaney 205 $a1st ed. 2018. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2018. 215 $a1 online resource (275 pages) 225 1 $aSpringer INdAM Series,$x2281-5198 ;$v29 311 08$a3-030-01958-6 327 $a1 M. Assellaou and A. Picarelli, A Hamilton-Jacobi-Bellman approach for the numerical computation of probabilistic state constrained reachable sets -- 2. A. Britzelmeier, A. De Marchi, and M. Gerdts, An iterative solution approach for a bi-level optimization problem for congestion avoidance on road networks -- 3 S. Cacace, R. Ferretti, and Z. Rafiei, Computation of Optimal Trajectories for Delay Systems: an Optimize-Then-Discretize Strategy for General-Purpose NLP Solvers -- 4 L. Mechelli and S. Volkwein, POD-Based Economic Optimal Control of Heat-Convection Phenomena -- 5 A. Alla and V. Simoncini, Order reduction approaches for the algebraic Riccati equation and the LQR problem -- 6 F. Durastante and S. Cipolla, Fractional PDE constrained optimization: box and sparse constrained problems -- 7 M. C. Delfour, Control, Shape, and Topological Derivatives via Minimax Differentiability of Lagrangians -- 8 A. J. Krener, Minimum Energy Estimation Applied to the Lorenz Attractor -- 9 M. Akian and E. Fodjo, Probabilistic max-plus schemes for solving Hamilton-Jacobi-Bellman equations -- 10 P. M. Dower, An adaptive max-plus eigenvector method for continuous time optimal control problems -- 11 W. Mc Eneaney and R. Zhao, Diffusion Process Representations for a Scalar-Field Schr¨odinger Equation Solution in Rotating Coordinates. 330 $aThe volume presents recent mathematical methods in the area of optimal control with a particular emphasis on the computational aspects and applications. Optimal control theory concerns the determination of control strategies for complex dynamical systems in order to optimize measures of their performance. The field was created in the 1960's, in response to the pressures of the "space race" between the US and the former USSR, but it now has a far wider scope and embraces a variety of areas ranging from process control to traffic flow optimization, renewable resources exploitation and financial market management. These emerging applications require increasingly efficient numerical methods to be developed for their solution ? a difficult task due the huge number of variables. Providing an up-to-date overview of several recent methods in this area, including fast dynamic programming algorithms, model predictive control and max-plus techniques, this book is intended for researchers, graduate students and applied scientists working in the area of control problems, differential games and their applications. 410 0$aSpringer INdAM Series,$x2281-5198 ;$v29 606 $aSystem theory 606 $aControl theory 606 $aNumerical analysis 606 $aMathematics$xData processing 606 $aEngineering mathematics 606 $aGame theory 606 $aSystems Theory, Control 606 $aNumerical Analysis 606 $aComputational Science and Engineering 606 $aEngineering Mathematics 606 $aGame Theory 615 0$aSystem theory. 615 0$aControl theory. 615 0$aNumerical analysis. 615 0$aMathematics$xData processing. 615 0$aEngineering mathematics. 615 0$aGame theory. 615 14$aSystems Theory, Control. 615 24$aNumerical Analysis. 615 24$aComputational Science and Engineering. 615 24$aEngineering Mathematics. 615 24$aGame Theory. 676 $a629.8312 676 $a629.8312 702 $aFalcone$b Maurizio$4edt$4http://id.loc.gov/vocabulary/relators/edt 702 $aFerretti$b Roberto$4edt$4http://id.loc.gov/vocabulary/relators/edt 702 $aGrüne$b Lars$4edt$4http://id.loc.gov/vocabulary/relators/edt 702 $aMcEneaney$b William M$4edt$4http://id.loc.gov/vocabulary/relators/edt 906 $aBOOK 912 $a9910309860103321 996 $aNumerical Methods for Optimal Control Problems$91563694 997 $aUNINA