LEADER 03723nam 22007215 450 001 9910309664503321 005 20251116211740.0 010 $a3-030-02586-1 024 7 $a10.1007/978-3-030-02586-1 035 $a(CKB)4100000007389562 035 $a(DE-He213)978-3-030-02586-1 035 $a(MiAaPQ)EBC6253176 035 $a(PPN)233797092 035 $a(EXLCZ)994100000007389562 100 $a20190107d2018 u| 0 101 0 $aeng 135 $aurnn#008mamaa 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aHyperbolic and Kinetic Models for Self-organised Biological Aggregations $eA Modelling and Pattern Formation Approach /$fby Raluca Eftimie 205 $a1st ed. 2018. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2018. 215 $a1 online resource (XIII, 280 p. 73 illus., 59 illus. in color.) 225 1 $aMathematical Biosciences Subseries,$x2524-6771 ;$v2232 311 08$a3-030-02585-3 320 $aIncludes bibliographical references and index. 330 $aThis book focuses on the spatio-temporal patterns generated by two classes of mathematical models (of hyperbolic and kinetic types) that have been increasingly used in the past several years to describe various biological and ecological communities. Here we combine an overview of various modelling approaches for collective behaviours displayed by individuals/cells/bacteria that interact locally and non-locally, with analytical and numerical mathematical techniques that can be used to investigate the spatio-temporal patterns produced by said individuals/cells/bacteria. Richly illustrated, the book offers a valuable guide for researchers new to the field, and is also suitable as a textbook for senior undergraduate or graduate students in mathematics or related disciplines. 410 0$aMathematical Biosciences Subseries,$x2524-6771 ;$v2232 606 $aBiomathematics 606 $aEcology 606 $aDifferential equations, Partial 606 $aNumerical analysis 606 $aBiotic communities 606 $aMathematics 606 $aMathematical and Computational Biology$3https://scigraph.springernature.com/ontologies/product-market-codes/M31000 606 $aTheoretical Ecology/Statistics$3https://scigraph.springernature.com/ontologies/product-market-codes/L19147 606 $aPartial Differential Equations$3https://scigraph.springernature.com/ontologies/product-market-codes/M12155 606 $aNumerical Analysis$3https://scigraph.springernature.com/ontologies/product-market-codes/M14050 606 $aCommunity & Population Ecology$3https://scigraph.springernature.com/ontologies/product-market-codes/L19120 606 $aMathematics of Planet Earth$3https://scigraph.springernature.com/ontologies/product-market-codes/M36000 615 0$aBiomathematics. 615 0$aEcology. 615 0$aDifferential equations, Partial. 615 0$aNumerical analysis. 615 0$aBiotic communities. 615 0$aMathematics. 615 14$aMathematical and Computational Biology. 615 24$aTheoretical Ecology/Statistics. 615 24$aPartial Differential Equations. 615 24$aNumerical Analysis. 615 24$aCommunity & Population Ecology. 615 24$aMathematics of Planet Earth. 676 $a570.151 676 $a570.15118 700 $aEftimie$b Raluca$4aut$4http://id.loc.gov/vocabulary/relators/aut$0766108 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910309664503321 996 $aHyperbolic and kinetic models for self-organised biological aggregations$91558277 997 $aUNINA