LEADER 04159nam 22005655 450 001 9910303449503321 005 20251230070126.0 010 $a3-030-01588-2 024 7 $a10.1007/978-3-030-01588-6 035 $a(CKB)4100000007279037 035 $a(MiAaPQ)EBC5625028 035 $a(DE-He213)978-3-030-01588-6 035 $a(PPN)232965285 035 $a(EXLCZ)994100000007279037 100 $a20181219d2018 u| 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aAlgebraic and Analytic Microlocal Analysis $eAAMA, Evanston, Illinois, USA, 2012 and 2013 /$fedited by Michael Hitrik, Dmitry Tamarkin, Boris Tsygan, Steve Zelditch 205 $a1st ed. 2018. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2018. 215 $a1 online resource (660 pages) 225 1 $aSpringer Proceedings in Mathematics & Statistics,$x2194-1017 ;$v269 311 08$a3-030-01586-6 327 $aPart I: Algebraic Microlocal Analysis -- Losev, I.: Procesi Bundles and Symplectic Re?ection Algebras -- Schapira, P.: Three Lectures on Algebraic Microlocal Analysis -- Tamarkin, D.: Microlocal Condition for Non-displaceability -- Tsygan, B.: A Microlocal Category Associated to a Symplectic Manifold -- Part II: Analytic Microlocal Analysis -- Berman, R.: Determinantal Point Processes and Fermions on Polarized Complex Manifolds: Bulk Universality -- Berndtsson, B.: Probability Measures Associated to Geodesics in the Space of Kahlermetrics -- Canzani, Y. and Toth, J: Intersection Bounds for Nodal Sets of Laplace Eigenfunctions -- Christ, M.: Upper Bounds for Bergman Kernels Associated to Positive Line Bundles with Smooth Hermitian Metrics -- Christ, M.: O?-diagonal Decay of Bergman Kernels: On a Question of Zelditch -- Hitrik, M. and Sjostrand, J: Two Mini-courses on Analytic Microlocal Analysis -- Lebeau, G.: A Proof of a Result of L. Boutet de Monvel -- Martinez, A., Nakamura, S. and Sordoni, V: Propagation of Analytic Singularities for Short and Long Range Perturbations of the Free Schrodinger Equation -- Zelditch, S. and Zhou, P: Pointwise Weyl Law for Partial Bergman Kernels -- Zworski, M.: Scattering Resonances as Viscosity Limits. 330 $aThis book presents contributions from two workshops in algebraic and analytic microlocal analysis that took place in 2012 and 2013 at Northwestern University. Featured papers expand on mini-courses and talks ranging from foundational material to advanced research-level papers, and new applications in symplectic geometry, mathematical physics, partial differential equations, and complex analysis are discussed in detail. Topics include Procesi bundles and symplectic reflection algebras, microlocal condition for non-displaceability, polarized complex manifolds, nodal sets of Laplace eigenfunctions, geodesics in the space of K?hler metrics, and partial Bergman kernels. This volume is a valuable resource for graduate students and researchers in mathematics interested in understanding microlocal analysis and learning about recent research in the area. 410 0$aSpringer Proceedings in Mathematics & Statistics,$x2194-1017 ;$v269 606 $aDifferential equations 606 $aFourier analysis 606 $aAlgebraic geometry 606 $aDifferential Equations 606 $aFourier Analysis 606 $aAlgebraic Geometry 615 0$aDifferential equations. 615 0$aFourier analysis. 615 0$aAlgebraic geometry. 615 14$aDifferential Equations. 615 24$aFourier Analysis. 615 24$aAlgebraic Geometry. 676 $a515 702 $aHitrik$b Michael$4edt$4http://id.loc.gov/vocabulary/relators/edt 702 $aTamarkin$b Dmitry$4edt$4http://id.loc.gov/vocabulary/relators/edt 702 $aTsygan$b Boris$4edt$4http://id.loc.gov/vocabulary/relators/edt 702 $aZelditch$b Steven$f1953-$4edt$4http://id.loc.gov/vocabulary/relators/edt 906 $aBOOK 912 $a9910303449503321 996 $aAlgebraic and Analytic Microlocal Analysis$91564642 997 $aUNINA