LEADER 04385nam 22007455 450 001 9910300555103321 005 20200702080237.0 010 $a3-319-96304-X 024 7 $a10.1007/978-3-319-96304-4 035 $a(CKB)4100000006374633 035 $a(MiAaPQ)EBC5509347 035 $a(DE-He213)978-3-319-96304-4 035 $a(PPN)230539378 035 $a(EXLCZ)994100000006374633 100 $a20180903d2018 u| 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aKinetics of Evaporation /$fby Denis N. Gerasimov, Eugeny I. Yurin 205 $a1st ed. 2018. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2018. 215 $a1 online resource (334 pages) 225 1 $aSpringer Series in Surface Sciences,$x0931-5195 ;$v68 311 $a3-319-96303-1 320 $aIncludes bibliographical references and index. 327 $aPreface -- Phase transition ?liquid ? vapor? -- The statistical approach -- The kinetic approach -- Numerical experiments: molecular dynamics simulations -- Velocity distribution function of evaporated atoms -- Total fluxes from the evaporation surface -- The evaporation coefficient -- Temperature jump on the evaporation surface -- Evaporation in the processes of boiling and cavitation -- Appendix A. Distribution functions -- Appendix B. Special functions. 330 $aThis monograph discusses the essential principles of the evaporation process by looking at it at the molecular and atomic level. In the first part methods of statistical physics, physical kinetics and numerical modeling are outlined including the Maxwell?s distribution function, the Boltzmann kinetic equation, the Vlasov approach, and the CUDA technique. The distribution functions of evaporating particles are then defined. Experimental results on the evaporation coefficient and the temperature jump on the evaporation surface are critically reviewed and compared to the theory and numerical results presented in previous chapters. The book ends with a chapter devoted to evaporation in different processes, such as boiling and cavitation. This monograph addresses graduate students and researchers working on phase transitions and related fields. 410 0$aSpringer Series in Surface Sciences,$x0931-5195 ;$v68 606 $aPhase transitions (Statistical physics) 606 $aStatistical physics 606 $aThermodynamics 606 $aHeat engineering 606 $aHeat transfer 606 $aMass transfer 606 $aMaterials?Surfaces 606 $aThin films 606 $aPhase Transitions and Multiphase Systems$3https://scigraph.springernature.com/ontologies/product-market-codes/P25099 606 $aStatistical Physics and Dynamical Systems$3https://scigraph.springernature.com/ontologies/product-market-codes/P19090 606 $aEngineering Thermodynamics, Heat and Mass Transfer$3https://scigraph.springernature.com/ontologies/product-market-codes/T14000 606 $aThermodynamics$3https://scigraph.springernature.com/ontologies/product-market-codes/P21050 606 $aApplications of Nonlinear Dynamics and Chaos Theory$3https://scigraph.springernature.com/ontologies/product-market-codes/P33020 606 $aSurfaces and Interfaces, Thin Films$3https://scigraph.springernature.com/ontologies/product-market-codes/Z19000 615 0$aPhase transitions (Statistical physics). 615 0$aStatistical physics. 615 0$aThermodynamics. 615 0$aHeat engineering. 615 0$aHeat transfer. 615 0$aMass transfer. 615 0$aMaterials?Surfaces. 615 0$aThin films. 615 14$aPhase Transitions and Multiphase Systems. 615 24$aStatistical Physics and Dynamical Systems. 615 24$aEngineering Thermodynamics, Heat and Mass Transfer. 615 24$aThermodynamics. 615 24$aApplications of Nonlinear Dynamics and Chaos Theory. 615 24$aSurfaces and Interfaces, Thin Films. 676 $a530.427 700 $aGerasimov$b Denis N$4aut$4http://id.loc.gov/vocabulary/relators/aut$0835346 702 $aYurin$b Eugeny I$4aut$4http://id.loc.gov/vocabulary/relators/aut 906 $aBOOK 912 $a9910300555103321 996 $aKinetics of Evaporation$92528288 997 $aUNINA