LEADER 00826nam1 2200229 i 450 001 VAN0125323 005 20230605033016.342 100 $a20191106d2018 |0itac50 ba 101 $aeng 102 $aDE 105 $a|||| ||||| 200 1 $aTetrahedrally Bonded Amorphous Carbon Films$fBernd Schultrich 210 $aBerlin$cSpringer$d2018 215 $avolumi$cill.$d24 cm 463 1$1001VAN0125325$12001 $aˆ1: ‰Basics, Structure and Preparation$fBernd Schultrich$1210 $aBerlin$cSpringer$d2018$1215 $aXXXII, 752 p.$cill.$d24 cm$v1 620 $dBerlin$3VANL000066 700 1$aSchultrich$bBernd$3VANV096755$0768196 712 $aSpringer $3VANV108073$4650 801 $aIT$bSOL$c20240614$gRICA 912 $aVAN0125323 996 $aTetrahedrally Bonded Amorphous Carbon Films$91564626 997 $aUNICAMPANIA LEADER 03654nam 22005535 450 001 9910300535803321 005 20251116204119.0 010 $a3-030-01409-6 024 7 $a10.1007/978-3-030-01409-4 035 $a(CKB)4100000007181203 035 $a(MiAaPQ)EBC5606685 035 $a(DE-He213)978-3-030-01409-4 035 $a(PPN)23247432X 035 $a(EXLCZ)994100000007181203 100 $a20181128d2018 u| 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aIntroduction to Tensor Network Methods $eNumerical simulations of low-dimensional many-body quantum systems /$fby Simone Montangero 205 $a1st ed. 2018. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2018. 215 $a1 online resource (172 pages) 311 08$a3-030-01408-8 327 $aIntroduction -- Part I: Software and Hardware -- Lesson 1: Computer for Physicists -- Lesson 2: Software for Physicists -- Part II: Crash Programming Course -- Lesson 3: Fortran -- Lesson 4: Python -- Lesson 5: Gnuplot -- Part III: Single-Body Problem -- Lesson 6: Matrix Diagonalization -- Lesson 7: Integrals -- Lesson 8: Differential Equations -- Part IV: Many-Body Problem -- Lesson 9: Monte Carlo -- Lesson 10: Renormalization Group -- Lesson 11: Tensor Networks -- Part V: Symmetries -- Lesson 12: Group Theory -- Lesson 13: Quantum Phase Transitions -- Lesson 14: Global Symmetries -- Lesson 15: Gauge Theories. . 330 $aThis volume of lecture notes briefly introduces the basic concepts needed in any computational physics course: software and hardware, programming skills, linear algebra, and differential calculus. It then presents more advanced numerical methods to tackle the quantum many-body problem: it reviews the numerical renormalization group and then focuses on tensor network methods, from basic concepts to gauge invariant ones. Finally, in the last part, the author presents some applications of tensor network methods to equilibrium and out-of-equilibrium correlated quantum matter. The book can be used for a graduate computational physics course. After successfully completing such a course, a student should be able to write a tensor network program and can begin to explore the physics of many-body quantum systems. The book can also serve as a reference for researchers working or starting out in the field. . 606 $aPhysics 606 $aQuantum theory 606 $aQuantum computers 606 $aMathematical physics 606 $aNumerical and Computational Physics, Simulation$3https://scigraph.springernature.com/ontologies/product-market-codes/P19021 606 $aQuantum Physics$3https://scigraph.springernature.com/ontologies/product-market-codes/P19080 606 $aQuantum Computing$3https://scigraph.springernature.com/ontologies/product-market-codes/M14070 606 $aMathematical Applications in the Physical Sciences$3https://scigraph.springernature.com/ontologies/product-market-codes/M13120 615 0$aPhysics. 615 0$aQuantum theory. 615 0$aQuantum computers. 615 0$aMathematical physics. 615 14$aNumerical and Computational Physics, Simulation. 615 24$aQuantum Physics. 615 24$aQuantum Computing. 615 24$aMathematical Applications in the Physical Sciences. 676 $a530.12 700 $aMontangero$b Simone$4aut$4http://id.loc.gov/vocabulary/relators/aut$0835322 906 $aBOOK 912 $a9910300535803321 996 $aIntroduction to Tensor Network Methods$92530993 997 $aUNINA