LEADER 03501nam 22005655 450 001 9910300531903321 005 20201223083840.0 010 $a3-319-92255-6 024 7 $a10.1007/978-3-319-92255-3 035 $a(CKB)4100000004974922 035 $a(MiAaPQ)EBC5438641 035 $a(DE-He213)978-3-319-92255-3 035 $a(PPN)229495893 035 $a(EXLCZ)994100000004974922 100 $a20180627d2018 u| 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aMultiplex Networks $eBasic Formalism and Structural Properties /$fby Emanuele Cozzo, Guilherme Ferraz de Arruda, Francisco Aparecido Rodrigues, Yamir Moreno 205 $a1st ed. 2018. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2018. 215 $a1 online resource (124 pages) $cillustrations 225 1 $aUnderstanding Complex Systems,$x2191-5326 311 $a3-319-92254-8 327 $aChapter1. Introduction -- Chapter2. Multiplex Networks: Basic Definitions and Formalism -- Chapter3. Structural Metrics -- Chapter4. Spectra -- Chapter5. Structural organization and transitions -- Chapter6. Polynomial eigenvalue formulation -- Chapter7. Tensorial representation. 330 $aThis book provides the basis of a formal language and explores its possibilities in the characterization of multiplex networks. Armed with the formalism developed, the authors define structural metrics for multiplex networks. A methodology to generalize monoplex structural metrics to multiplex networks is also presented so that the reader will be able to generalize other metrics of interest in a systematic way. Therefore, this book will serve as a guide for the theoretical development of new multiplex metrics. Furthermore, this Brief describes the spectral properties of these networks in relation to concepts from algebraic graph theory and the theory of matrix polynomials. The text is rounded off by analyzing the different structural transitions present in multiplex systems as well as by a brief overview of some representative dynamical processes. Multiplex Networks will appeal to students, researchers, and professionals within the fields of network science, graph theory, and data science. . 410 0$aUnderstanding Complex Systems,$x2191-5326 606 $aPhysics 606 $aGraph theory 606 $aBig data 606 $aApplications of Graph Theory and Complex Networks$3https://scigraph.springernature.com/ontologies/product-market-codes/P33010 606 $aGraph Theory$3https://scigraph.springernature.com/ontologies/product-market-codes/M29020 606 $aBig Data/Analytics$3https://scigraph.springernature.com/ontologies/product-market-codes/522070 615 0$aPhysics. 615 0$aGraph theory. 615 0$aBig data. 615 14$aApplications of Graph Theory and Complex Networks. 615 24$aGraph Theory. 615 24$aBig Data/Analytics. 676 $a003 700 $aCozzo$b Emanuele$4aut$4http://id.loc.gov/vocabulary/relators/aut$01063050 702 $ade Arruda$b Guilherme Ferraz$4aut$4http://id.loc.gov/vocabulary/relators/aut 702 $aRodrigues$b Francisco Aparecido$4aut$4http://id.loc.gov/vocabulary/relators/aut 702 $aMoreno$b Yamir$4aut$4http://id.loc.gov/vocabulary/relators/aut 906 $aBOOK 912 $a9910300531903321 996 $aMultiplex Networks$92529855 997 $aUNINA