LEADER 04372nam 22007695 450 001 9910300529103321 005 20200702080504.0 010 $a3-319-94953-5 024 7 $a10.1007/978-3-319-94953-6 035 $a(CKB)4100000005472031 035 $a(DE-He213)978-3-319-94953-6 035 $a(MiAaPQ)EBC6301904 035 $a(PPN)229502717 035 $a(EXLCZ)994100000005472031 100 $a20180731d2018 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aSpectroscopy of Semiconductors$b[electronic resource] $eNumerical Analysis Bridging Quantum Mechanics and Experiments /$fby Wei Lu, Ying Fu 205 $a1st ed. 2018. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2018. 215 $a1 online resource (X, 240 p. 120 illus., 76 illus. in color.) 225 1 $aSpringer Series in Optical Sciences,$x0342-4111 ;$v215 311 $a3-319-94952-7 327 $aOptical Spectral Measurement -- Introduction to Physics and Optical Properties of Semiconductors -- Reflection and Transmission -- Photoluminescence -- Modulation Spectroscopy -- Photocurrent Spectroscopy -- Optical Properties of Fluorescent Colloidal Quantum Dots -- Fortran and Matlab Computer Codes. 330 $aThe science and technology related to semiconductors have received significant attention for applications in various fields including microelectronics, nanophotonics, and biotechnologies. Understanding of semiconductors has advanced to such a level that we are now able to design novel system complexes before we go for the proof-of-principle experimental demonstration. This book explains the experimental setups for optical spectral analysis of semiconductors and describes the experimental methods and the basic quantum mechanical principles underlying the fast-developing nanotechnology for semiconductors. Further, it uses numerous case studies with detailed theoretical discussions and calculations to demonstrate the data analysis. Covering structures ranging from bulk to the nanoscale, it examines applications in the semiconductor industry and biomedicine. Starting from the most basic physics of geometric optics, wave optics, quantum mechanics, solid-state physics, it provides a self-contained resource on the subject for university undergraduates. The book can be further used as a toolbox for researching and developing semiconductor nanotechnology based on spectroscopy. 410 0$aSpringer Series in Optical Sciences,$x0342-4111 ;$v215 606 $aSemiconductors 606 $aSpectroscopy 606 $aMicroscopy 606 $aLasers 606 $aPhotonics 606 $aOptical materials 606 $aElectronic materials 606 $aMicrowaves 606 $aOptical engineering 606 $aSemiconductors$3https://scigraph.springernature.com/ontologies/product-market-codes/P25150 606 $aSpectroscopy and Microscopy$3https://scigraph.springernature.com/ontologies/product-market-codes/P31090 606 $aOptics, Lasers, Photonics, Optical Devices$3https://scigraph.springernature.com/ontologies/product-market-codes/P31030 606 $aOptical and Electronic Materials$3https://scigraph.springernature.com/ontologies/product-market-codes/Z12000 606 $aMicrowaves, RF and Optical Engineering$3https://scigraph.springernature.com/ontologies/product-market-codes/T24019 615 0$aSemiconductors. 615 0$aSpectroscopy. 615 0$aMicroscopy. 615 0$aLasers. 615 0$aPhotonics. 615 0$aOptical materials. 615 0$aElectronic materials. 615 0$aMicrowaves. 615 0$aOptical engineering. 615 14$aSemiconductors. 615 24$aSpectroscopy and Microscopy. 615 24$aOptics, Lasers, Photonics, Optical Devices. 615 24$aOptical and Electronic Materials. 615 24$aMicrowaves, RF and Optical Engineering. 676 $a530 700 $aLu$b Wei$4aut$4http://id.loc.gov/vocabulary/relators/aut$0955719 702 $aFu$b Ying$4aut$4http://id.loc.gov/vocabulary/relators/aut 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910300529103321 996 $aSpectroscopy of Semiconductors$92527107 997 $aUNINA