LEADER 03987nam 22006735 450 001 9910300527903321 005 20200629114918.0 010 $a3-030-01482-7 024 7 $a10.1007/978-3-030-01482-7 035 $a(CKB)4100000007110970 035 $a(MiAaPQ)EBC5583519 035 $a(DE-He213)978-3-030-01482-7 035 $a(PPN)232468842 035 $a(EXLCZ)994100000007110970 100 $a20181102d2018 u| 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aQuantum Confined Excitons in 2-Dimensional Materials /$fby Carmen Palacios-Berraquero 205 $a1st ed. 2018. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2018. 215 $a1 online resource (125 pages) 225 1 $aSpringer Theses, Recognizing Outstanding Ph.D. Research,$x2190-5053 311 $a3-030-01481-9 327 $aIntroduction -- 2D-Based Quantum Technologies -- Experimental Techniques -- Deterministic Arrays of Single-Photon Sources -- Atomically-Thin Quantum Light Emitting Diodes -- 2D Quantum Light-Matter Interfaces -- Conclusions and Outlook. 330 $aThis book presents the first established experimental results of an emergent field: 2-dimensional materials as platforms for quantum technologies, specifically through the optics of quantum-confined excitons. It also provides an extensive review of the literature from a number of disciplines that informed the research, and introduces the materials of focus ? 2d Transition Metal Dichalcogenides (2d-TMDs) ? in detail, discussing electronic and chemical structure, excitonic behaviour and response to strain. This is followed by a brief overview of quantum information technologies, including concepts such as single-photon sources and quantum networks. The methods chapter addresses quantum optics techniques and 2d-material processing, while the results section shows the development of a method to deterministically create quantum dots (QDs) in the 2d-TMDs, which can trap single-excitons; the fabrication of atomically thin quantum light-emitting diodes to induce all-electrical single-photon emission from the QDs, and lastly, the use of devices to controllably trap single-spins in the QDs ?the first step towards their use as optically-addressable matter qubits. 410 0$aSpringer Theses, Recognizing Outstanding Ph.D. Research,$x2190-5053 606 $aQuantum computers 606 $aSpintronics 606 $aQuantum optics 606 $aOptical materials 606 $aElectronics$xMaterials 606 $aSurfaces (Physics) 606 $aInterfaces (Physical sciences) 606 $aThin films 606 $aQuantum Information Technology, Spintronics$3https://scigraph.springernature.com/ontologies/product-market-codes/P31070 606 $aQuantum Optics$3https://scigraph.springernature.com/ontologies/product-market-codes/P24050 606 $aOptical and Electronic Materials$3https://scigraph.springernature.com/ontologies/product-market-codes/Z12000 606 $aSurface and Interface Science, Thin Films$3https://scigraph.springernature.com/ontologies/product-market-codes/P25160 615 0$aQuantum computers. 615 0$aSpintronics. 615 0$aQuantum optics. 615 0$aOptical materials. 615 0$aElectronics$xMaterials. 615 0$aSurfaces (Physics) 615 0$aInterfaces (Physical sciences) 615 0$aThin films. 615 14$aQuantum Information Technology, Spintronics. 615 24$aQuantum Optics. 615 24$aOptical and Electronic Materials. 615 24$aSurface and Interface Science, Thin Films. 676 $a621.38152 700 $aPalacios-Berraquero$b Carmen$4aut$4http://id.loc.gov/vocabulary/relators/aut$01065355 906 $aBOOK 912 $a9910300527903321 996 $aQuantum Confined Excitons in 2-Dimensional Materials$92544824 997 $aUNINA