LEADER 02211 am 2200529 n 450 001 9910416490103321 005 20170726 010 $a2-8218-9642-5 024 7 $a10.4000/books.pulg.1641 035 $a(CKB)4100000000883754 035 $a(FrMaCLE)OB-pulg-1641 035 $a(oapen)https://directory.doabooks.org/handle/20.500.12854/43086 035 $a(PPN)22089793X 035 $a(EXLCZ)994100000000883754 100 $a20171025j|||||||| ||| 0 101 0 $afre 135 $auu||||||m|||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aChemins d'Hécate $ePortes, routes, carrefours et autres figures de l'entre-deux /$fAthanassia Zografou 210 $aLiège $cPresses universitaires de Liège$d2017 311 $a2-9600717-7-8 330 $aHécate est une figure divine qui a longtemps été reléguée dans le monde d?en bas, dans l?univers de la superstition et de la magie. Les approches classiques n?ont guère rendu justice au rapport que la déesse entretient à l?espace, par sa présence aux portes, aux carrefours et aux divers autres points de passage. C?est une exploration attentive aux réalités concrètes, voire triviales, qu?offrent les analyses de ces Chemins d?Hécate, où la déesse fonctionne comme une sorte d?opérateur. Sans prétendre à une visée totalisante qui pourrait être factice, ce livre propose une image plurielle, mais cohérente d?Hécate en tant que divinité des entre-deux qui marquent l?espace, le temps et la vie elle-même. 606 $aReligion 606 $aHécate 606 $adivinités grecques antiques 606 $aroutes 606 $aportes 606 $areligion 610 $aroutes 610 $adivinités grecques antiques 610 $aHécate 610 $aportes 610 $areligion 615 4$aReligion 615 4$aHécate 615 4$adivinités grecques antiques 615 4$aroutes 615 4$aportes 615 4$areligion 700 $aZografou$b Athanassia$0616828 801 0$bFR-FrMaCLE 906 $aBOOK 912 $a9910416490103321 996 $aChemins d'Hécate$91087561 997 $aUNINA LEADER 04035nam 22007575 450 001 9910300429703321 005 20250609111955.0 010 $a3-662-46756-9 024 7 $a10.1007/978-3-662-46756-5 035 $a(CKB)3710000000402821 035 $a(EBL)2094674 035 $a(SSID)ssj0001501641 035 $a(PQKBManifestationID)11830244 035 $a(PQKBTitleCode)TC0001501641 035 $a(PQKBWorkID)11446594 035 $a(PQKB)11414451 035 $a(DE-He213)978-3-662-46756-5 035 $a(MiAaPQ)EBC2094674 035 $a(PPN)185486002 035 $a(MiAaPQ)EBC3110061 035 $a(EXLCZ)993710000000402821 100 $a20150421d2015 u| 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aOff-Diagonal Bethe Ansatz for Exactly Solvable Models /$fby Yupeng Wang, Wen-Li Yang, Junpeng Cao, Kangjie Shi 205 $a1st ed. 2015. 210 1$aBerlin, Heidelberg :$cSpringer Berlin Heidelberg :$cImprint: Springer,$d2015. 215 $a1 online resource (303 p.) 300 $aDescription based upon print version of record. 311 08$a3-662-46755-0 320 $aIncludes bibliographical references and index. 327 $aOverview -- The algebraic Bethe ansatz -- The periodic anisotropic spin-1/2 chains -- The spin-1/2 torus -- The spin-1/2 chain with arbitrary boundary fields -- The one-dimensional Hubbard model -- The nested off-diagonal Bethe ansatz -- The hierarchical off-diagonal Bethe Ansatz -- The Izergin-Korepin model. 330 $aThis book serves as an introduction of the off-diagonal Bethe Ansatz method, an analytic theory for the eigenvalue problem of quantum integrable models. It also presents some fundamental knowledge about quantum integrability and the algebraic Bethe Ansatz method. Based on the intrinsic properties of R-matrix and K-matrices, the book introduces a systematic method to construct operator identities of transfer matrix. These identities allow one to establish the inhomogeneous T-Q relation formalism to obtain Bethe Ansatz equations and to retrieve corresponding eigenstates. Several longstanding models can thus be solved via this method since the lack of obvious reference states is made up. Both the exact results and the off-diagonal Bethe Ansatz method itself may have important applications in the fields of quantum field theory, low-dimensional condensed matter physics, statistical physics and cold atom systems. 606 $aPhysics 606 $aCondensed matter 606 $aQuantum field theory 606 $aString models 606 $aMathematical physics 606 $aMathematical Methods in Physics$3https://scigraph.springernature.com/ontologies/product-market-codes/P19013 606 $aCondensed Matter Physics$3https://scigraph.springernature.com/ontologies/product-market-codes/P25005 606 $aQuantum Field Theories, String Theory$3https://scigraph.springernature.com/ontologies/product-market-codes/P19048 606 $aMathematical Physics$3https://scigraph.springernature.com/ontologies/product-market-codes/M35000 615 0$aPhysics. 615 0$aCondensed matter. 615 0$aQuantum field theory. 615 0$aString models. 615 0$aMathematical physics. 615 14$aMathematical Methods in Physics. 615 24$aCondensed Matter Physics. 615 24$aQuantum Field Theories, String Theory. 615 24$aMathematical Physics. 676 $a530 676 $a530.14 676 $a530.15 676 $a530.41 700 $aWang$b Yupeng$4aut$4http://id.loc.gov/vocabulary/relators/aut$01060169 702 $aYang$b Wen-Li$4aut$4http://id.loc.gov/vocabulary/relators/aut 702 $aCao$b Junpeng$4aut$4http://id.loc.gov/vocabulary/relators/aut 702 $aShi$b Kangjie$4aut$4http://id.loc.gov/vocabulary/relators/aut 906 $aBOOK 912 $a9910300429703321 996 $aOff-Diagonal Bethe Ansatz for Exactly Solvable Models$92511521 997 $aUNINA