LEADER 04321nam 22007935 450 001 9910300429403321 005 20200705032837.0 010 $a3-319-19354-6 024 7 $a10.1007/978-3-319-19354-0 035 $a(CKB)3710000000434050 035 $a(EBL)2120650 035 $a(OCoLC)910935386 035 $a(SSID)ssj0001525196 035 $a(PQKBManifestationID)11900765 035 $a(PQKBTitleCode)TC0001525196 035 $a(PQKBWorkID)11486648 035 $a(PQKB)10120999 035 $a(DE-He213)978-3-319-19354-0 035 $a(MiAaPQ)EBC2120650 035 $a(PPN)186401477 035 $a(EXLCZ)993710000000434050 100 $a20150609d2015 u| 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aDynamics Near Quantum Criticality in Two Space Dimensions /$fby Snir Gazit 205 $a1st ed. 2015. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2015. 215 $a1 online resource (82 p.) 225 1 $aSpringer Theses, Recognizing Outstanding Ph.D. Research,$x2190-5053 300 $aDescription based upon print version of record. 311 $a3-319-19353-8 320 $aIncludes bibliographical references. 327 $aIntroduction -- Dynamics and Conductivity Near Quantum Criticality.-  Critical Conductivity and Charge Vortex Duality Near Quantum Criticality -- Summary and Outlook. 330 $a This work addresses dynamical aspects of quantum criticality in two space dimensions. It probes two energy scales: the amplitude (Higgs) mode, which describes fluctuations of the order parameter amplitude in the broken symmetry phase, and the dual vortex superfluid stiffness. The results demonstrate that the amplitude mode can be probed arbitrarily close to criticality in the universal lineshape of the scalar susceptibility and the optical conductivity. The hallmark of quantum criticality is the emergence of softening energy scales near the phase transition. In addition, the author employs the charge-vortex duality to show that the capacitance of the Mott insulator near the superfluid to insulator phase transition serves as a probe for the dual vortex superfluid stiffness. The numerical methods employed are described in detail, in particular a worm algorithm for O(N) relativistic models and methods for numerical analytic continuation of quantum Monte Carlo data. The predictions obtained are particularly relevant to recent experiments in cold atomic systems and disordered superconductors.  . 410 0$aSpringer Theses, Recognizing Outstanding Ph.D. Research,$x2190-5053 606 $aPhase transitions (Statistical physics) 606 $aPhase transformations (Statistical physics) 606 $aCondensed materials 606 $aQuantum physics 606 $aStatistical physics 606 $aDynamical systems 606 $aPhase Transitions and Multiphase Systems$3https://scigraph.springernature.com/ontologies/product-market-codes/P25099 606 $aQuantum Gases and Condensates$3https://scigraph.springernature.com/ontologies/product-market-codes/P24033 606 $aQuantum Physics$3https://scigraph.springernature.com/ontologies/product-market-codes/P19080 606 $aComplex Systems$3https://scigraph.springernature.com/ontologies/product-market-codes/P33000 606 $aStatistical Physics and Dynamical Systems$3https://scigraph.springernature.com/ontologies/product-market-codes/P19090 615 0$aPhase transitions (Statistical physics). 615 0$aPhase transformations (Statistical physics). 615 0$aCondensed materials. 615 0$aQuantum physics. 615 0$aStatistical physics. 615 0$aDynamical systems. 615 14$aPhase Transitions and Multiphase Systems. 615 24$aQuantum Gases and Condensates. 615 24$aQuantum Physics. 615 24$aComplex Systems. 615 24$aStatistical Physics and Dynamical Systems. 676 $a530.474 700 $aGazit$b Snir$4aut$4http://id.loc.gov/vocabulary/relators/aut$0792268 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910300429403321 996 $aDynamics Near Quantum Criticality in Two Space Dimensions$91771538 997 $aUNINA