LEADER 03588nam 22006495 450 001 9910300423203321 005 20200704094602.0 010 $a3-319-16643-3 024 7 $a10.1007/978-3-319-16643-8 035 $a(CKB)3710000000379655 035 $a(SSID)ssj0001465618 035 $a(PQKBManifestationID)11825661 035 $a(PQKBTitleCode)TC0001465618 035 $a(PQKBWorkID)11477946 035 $a(PQKB)11245427 035 $a(DE-He213)978-3-319-16643-8 035 $a(MiAaPQ)EBC5592240 035 $a(PPN)18489462X 035 $a(EXLCZ)993710000000379655 100 $a20150328d2015 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aMultidimensional Periodic Schrödinger Operator $ePerturbation Theory and Applications /$fby Oktay Veliev 205 $a1st ed. 2015. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2015. 215 $a1 online resource (X, 242 p.) 225 1 $aSpringer Tracts in Modern Physics,$x0081-3869 ;$v263 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a3-319-16642-5 320 $aIncludes bibliographical references and index. 327 $aPreface -- Asymptotic Formulas for the Bloch Eigenvalues and Bloch Functions -- Constructive Determination of the Spectral Invariants -- Periodic Potential from the Spectral Invariants -- Conclusions. 330 $aThe book describes the direct problems and the inverse problem of the multidimensional Schrödinger operator with a periodic potential. This concerns perturbation theory and constructive determination of the spectral invariants and finding the periodic potential from the given Bloch eigenvalues. The unique method of this book derives the asymptotic formulas for Bloch eigenvalues and Bloch functions for arbitrary dimension. Moreover, the measure of the iso-energetic surfaces in the high energy region is construct and estimated. It implies the validity of the Bethe-Sommerfeld conjecture for arbitrary dimensions and arbitrary lattices. Using the perturbation theory constructed in this book, the spectral invariants of the multidimensional operator from the given Bloch eigenvalues are determined. Some of these invariants are explicitly expressed by the Fourier coefficients of the potential. This way the possibility to determine the potential constructively by using Bloch eigenvalues as input data is given. In the end an algorithm for the unique determination of the potential is given. 410 0$aSpringer Tracts in Modern Physics,$x0081-3869 ;$v263 606 $aQuantum theory 606 $aSolid state physics 606 $aMathematical physics 606 $aQuantum Physics$3https://scigraph.springernature.com/ontologies/product-market-codes/P19080 606 $aSolid State Physics$3https://scigraph.springernature.com/ontologies/product-market-codes/P25013 606 $aMathematical Physics$3https://scigraph.springernature.com/ontologies/product-market-codes/M35000 615 0$aQuantum theory. 615 0$aSolid state physics. 615 0$aMathematical physics. 615 14$aQuantum Physics. 615 24$aSolid State Physics. 615 24$aMathematical Physics. 676 $a515.724 700 $aVeliev$b Oktay$4aut$4http://id.loc.gov/vocabulary/relators/aut$0792319 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910300423203321 996 $aMultidimensional Periodic Schrödinger Operator$91771629 997 $aUNINA