LEADER 04371nam 22008895 450 001 9910300421103321 005 20200705034152.0 010 $a3-319-20016-X 024 7 $a10.1007/978-3-319-20016-3 035 $a(CKB)3710000000434391 035 $a(EBL)2120660 035 $a(OCoLC)911386372 035 $a(SSID)ssj0001525244 035 $a(PQKBManifestationID)11820644 035 $a(PQKBTitleCode)TC0001525244 035 $a(PQKBWorkID)11485621 035 $a(PQKB)11502620 035 $a(DE-He213)978-3-319-20016-3 035 $a(MiAaPQ)EBC2120660 035 $a(PPN)186401574 035 $a(EXLCZ)993710000000434391 100 $a20150619d2015 u| 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aNonlinear Mode Decomposition $eTheory and Applications /$fby Dmytro Iatsenko 205 $a1st ed. 2015. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2015. 215 $a1 online resource (152 p.) 225 1 $aSpringer Theses, Recognizing Outstanding Ph.D. Research,$x2190-5053 300 $aDescription based upon print version of record. 311 $a3-319-20015-1 320 $aIncludes bibliographical references. 327 $aIntroduction.- Linear Time-Frequency Analysis.- Extraction of Components from the TFR -- Nonlinear Mode Decomposition -- Examples, Applications and Related Issues.- Conclusion. 330 $aThis work introduces a new method for analysing measured signals: nonlinear mode decomposition, or NMD. It justifies NMD mathematically, demonstrates it in several applications, and explains in detail how to use it in practice. Scientists often need to be able to analyse time series data that include a complex combination of oscillatory modes of differing origin, usually contaminated by random fluctuations or noise. Furthermore, the basic oscillation frequencies of the modes may vary in time; for example, human blood flow manifests at least six characteristic frequencies, all of which wander in time. NMD allows us to separate these components from each other and from the noise, with immediate potential applications in diagnosis and prognosis. MatLab codes for rapid implementation are available from the author. NMD will most likely come to be used in a broad range of applications. 410 0$aSpringer Theses, Recognizing Outstanding Ph.D. Research,$x2190-5053 606 $aPhysics 606 $aDynamics 606 $aErgodic theory 606 $aSignal processing 606 $aImage processing 606 $aSpeech processing systems 606 $aComputer software 606 $aStatistical physics 606 $aDynamics 606 $aNumerical and Computational Physics, Simulation$3https://scigraph.springernature.com/ontologies/product-market-codes/P19021 606 $aDynamical Systems and Ergodic Theory$3https://scigraph.springernature.com/ontologies/product-market-codes/M1204X 606 $aSignal, Image and Speech Processing$3https://scigraph.springernature.com/ontologies/product-market-codes/T24051 606 $aMathematical Software$3https://scigraph.springernature.com/ontologies/product-market-codes/M14042 606 $aComplex Systems$3https://scigraph.springernature.com/ontologies/product-market-codes/P33000 606 $aStatistical Physics and Dynamical Systems$3https://scigraph.springernature.com/ontologies/product-market-codes/P19090 615 0$aPhysics. 615 0$aDynamics. 615 0$aErgodic theory. 615 0$aSignal processing. 615 0$aImage processing. 615 0$aSpeech processing systems. 615 0$aComputer software. 615 0$aStatistical physics. 615 0$aDynamics. 615 14$aNumerical and Computational Physics, Simulation. 615 24$aDynamical Systems and Ergodic Theory. 615 24$aSignal, Image and Speech Processing. 615 24$aMathematical Software. 615 24$aComplex Systems. 615 24$aStatistical Physics and Dynamical Systems. 676 $a004 676 $a515.39 676 $a515.48 676 $a530 700 $aIatsenko$b Dmytro$4aut$4http://id.loc.gov/vocabulary/relators/aut$0792325 906 $aBOOK 912 $a9910300421103321 996 $aNonlinear Mode Decomposition$91771644 997 $aUNINA