LEADER 03792nam 22007695 450 001 9910300416603321 005 20231024225529.0 010 $a4-431-55148-4 024 7 $a10.1007/978-4-431-55148-5 035 $a(CKB)3710000000227468 035 $a(SSID)ssj0001338712 035 $a(PQKBManifestationID)11743301 035 $a(PQKBTitleCode)TC0001338712 035 $a(PQKBWorkID)11344393 035 $a(PQKB)10303627 035 $a(DE-He213)978-4-431-55148-5 035 $a(MiAaPQ)EBC6285548 035 $a(MiAaPQ)EBC5585926 035 $a(Au-PeEL)EBL5585926 035 $a(OCoLC)890014701 035 $z(PPN)258849444 035 $a(PPN)180626787 035 $a(EXLCZ)993710000000227468 100 $a20140827d2015 u| 0 101 0 $aeng 135 $aurnn#008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aFundamentals of Semiconductor Lasers /$fby Takahiro Numai 205 $a2nd ed. 2015. 210 1$aTokyo :$cSpringer Japan :$cImprint: Springer,$d2015. 215 $a1 online resource (XIV, 289 p. 193 illus.) 225 1 $aSpringer Series in Optical Sciences,$x0342-4111 ;$v93 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a4-431-55147-6 320 $aIncludes bibliographical references and index. 327 $aBand Structures -- Optical Transitions -- Optical Waveguides -- Optical Resonators -- Fundamentals of Semiconductor Lasers -- Dynamic Single-Mode LDs -- Quantum Well LDs -- Control of Spontaneous Emission. 330 $aThis book explains physics under the operating principles of semiconductor lasers in detail based on the experience of the author, dealing with the first manufacturing of phase-shifted DFB-LDs and recent research on transverse modes.   The book also bridges a wide gap between journal papers and textbooks, requiring only an undergraduate-level knowledge of electromagnetism and quantum mechanics, and helps readers to understand journal papers where definitions of some technical terms vary, depending on the paper. Two definitions of the photon density in the rate equations and two definitions of the phase-shift in the phase-shifted DFB-LD are explained, and differences in the calculated results are indicated, depending on the definitions.    Readers can understand the physics of semiconductor lasers and analytical tools for Fabry-Perot LDs, DFB-LDs, and VCSELs and will be stimulated to develop semiconductor lasers themselves. 410 0$aSpringer Series in Optical Sciences,$x0342-4111 ;$v93 606 $aLasers 606 $aPhotonics 606 $aOptical materials 606 $aElectronics$xMaterials 606 $aMicrowaves 606 $aOptical engineering 606 $aOptics, Lasers, Photonics, Optical Devices$3https://scigraph.springernature.com/ontologies/product-market-codes/P31030 606 $aOptical and Electronic Materials$3https://scigraph.springernature.com/ontologies/product-market-codes/Z12000 606 $aMicrowaves, RF and Optical Engineering$3https://scigraph.springernature.com/ontologies/product-market-codes/T24019 615 0$aLasers. 615 0$aPhotonics. 615 0$aOptical materials. 615 0$aElectronics$xMaterials. 615 0$aMicrowaves. 615 0$aOptical engineering. 615 14$aOptics, Lasers, Photonics, Optical Devices. 615 24$aOptical and Electronic Materials. 615 24$aMicrowaves, RF and Optical Engineering. 676 $a621.3661 700 $aNumai$b Takahiro$4aut$4http://id.loc.gov/vocabulary/relators/aut$0792813 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910300416603321 996 $aFundamentals of Semiconductor Lasers$91773050 997 $aUNINA