LEADER 03838nam 22007335 450 001 9910300416003321 005 20200630160519.0 010 $a4-431-55019-4 024 7 $a10.1007/978-4-431-55019-8 035 $a(CKB)3710000000227467 035 $a(EBL)1802513 035 $a(SSID)ssj0001338797 035 $a(PQKBManifestationID)11770404 035 $a(PQKBTitleCode)TC0001338797 035 $a(PQKBWorkID)11345462 035 $a(PQKB)10788714 035 $a(DE-He213)978-4-431-55019-8 035 $a(MiAaPQ)EBC1802513 035 $a(PPN)180628143 035 $a(EXLCZ)993710000000227467 100 $a20140828d2015 u| 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aMulti-Step Multi-Input One-Way Quantum Information Processing with Spatial and Temporal Modes of Light /$fby Ryuji Ukai 205 $a1st ed. 2015. 210 1$aTokyo :$cSpringer Japan :$cImprint: Springer,$d2015. 215 $a1 online resource (360 p.) 225 1 $aSpringer Theses, Recognizing Outstanding Ph.D. Research,$x2190-5053 300 $aDescription based upon print version of record. 311 $a1-322-17367-2 311 $a4-431-55018-6 320 $aIncludes bibliographical references. 327 $aIntroduction -- Quantum Optics -- Quantum States and Quantum State Manipulations -- Offline Scheme And One-Way Quantum Computation -- Cluster States And One-Way Quantum Computation -- Experimental Generation of Optical Continuous-Variable Cluster States -- Experimental Demonstration of Controlled-Z Gate for Continuous Variables -- Experimental Demonstration of Optimum Nonlocal Gate for Continuous Variables -- Experimental Demonstration of Gain-Tunable Entangling Gate for Continuous Variables -- Temporal-Mode Cluster States -- Summary. 330 $aIn this thesis, the author develops for the first time an implementation methodology for arbitrary Gaussian operations using temporal-mode cluster states. The author also presents three experiments involving continuous-variable one-way quantum computations, where their non-classical nature is shown by observing entanglement at the outputs. The experimental basic structure of one-way quantum computation over two-mode input state is demonstrated by the controlled-Z gate and the optimum nonlocal gate experiments. Furthermore, the author proves that the operation can be controlled by the gain-tunable entangling gate experiment. 410 0$aSpringer Theses, Recognizing Outstanding Ph.D. Research,$x2190-5053 606 $aQuantum optics 606 $aQuantum computers 606 $aSpintronics 606 $aQuantum physics 606 $aQuantum Optics$3https://scigraph.springernature.com/ontologies/product-market-codes/P24050 606 $aQuantum Information Technology, Spintronics$3https://scigraph.springernature.com/ontologies/product-market-codes/P31070 606 $aQuantum Physics$3https://scigraph.springernature.com/ontologies/product-market-codes/P19080 606 $aQuantum Computing$3https://scigraph.springernature.com/ontologies/product-market-codes/M14070 615 0$aQuantum optics. 615 0$aQuantum computers. 615 0$aSpintronics. 615 0$aQuantum physics. 615 14$aQuantum Optics. 615 24$aQuantum Information Technology, Spintronics. 615 24$aQuantum Physics. 615 24$aQuantum Computing. 676 $a006.3722 676 $a006.3843 700 $aUkai$b Ryuji$4aut$4http://id.loc.gov/vocabulary/relators/aut$0792817 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910300416003321 996 $aMulti-Step Multi-Input One-Way Quantum Information Processing with Spatial and Temporal Modes of Light$91773054 997 $aUNINA