LEADER 04005nam 22008175 450 001 9910300406903321 005 20251003190406.0 010 $a1-4939-1277-1 024 7 $a10.1007/978-1-4939-1277-3 035 $a(CKB)3710000000227337 035 $a(SSID)ssj0001338739 035 $a(PQKBManifestationID)11867839 035 $a(PQKBTitleCode)TC0001338739 035 $a(PQKBWorkID)11344741 035 $a(PQKB)10727798 035 $a(DE-He213)978-1-4939-1277-3 035 $a(MiAaPQ)EBC6314943 035 $a(MiAaPQ)EBC5594520 035 $a(Au-PeEL)EBL5594520 035 $a(OCoLC)890324351 035 $a(PPN)180624202 035 $a(MiAaPQ)EBC1802537 035 $a(EXLCZ)993710000000227337 100 $a20140827d2015 u| 0 101 0 $aeng 135 $aurnn#008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aInside Interesting Integrals $eA Collection of Sneaky Tricks, Sly Substitutions, and Numerous Other Stupendously Clever, Awesomely Wicked, and Devilishly Seductive Maneuvers for Computing Nearly 200 Perplexing Definite Integrals From Physics, Engineering, and Mathematics (Plus 60 Challenge Problems with Complete, Detailed Solutions) /$fby Paul J. Nahin 205 $a1st ed. 2015. 210 1$aNew York, NY :$cSpringer New York :$cImprint: Springer,$d2015. 215 $a1 online resource (XXIII, 412 p. 34 illus., 1 illus. in color.) 225 1 $aUndergraduate Lecture Notes in Physics,$x2192-4805 300 $aBibliographic Level Mode of Issuance: Monograph 311 08$a1-4939-1276-3 320 $aIncludes bibliographical references. 327 $aFrom the Contents: Preface -- Introduction -- ?Easy? Integrals -- Feynman?s Favorite Trick -- Gamma and Beta Function Integrals -- Using Power Series to Evaluate Integrals -- Seven Not-So-Easy Integrals -- Using ?(-1) to Evaluate Integrals -- Contour Integration -- Epilogue -- Solutions to the Challenge Problems. 330 $aWhat?s the point of calculating definite integrals since you can?t possibly do them all? What makes doing the specific integrals in this book of value aren?t the specific answers we?ll obtain, but rather the methods we?ll use in obtaining those answers; methods you can use for evaluating the integrals you will encounter in the future. This book is written in a light-hearted manner for students who have completed the first year of college or high school AP calculus, and have just a bit of exposure to the concept of a differential equation. Every result is fully derived. If you are fascinated by definite integrals, then this is a book for you. 410 0$aUndergraduate Lecture Notes in Physics,$x2192-4805 606 $aMathematical physics 606 $aMathematical analysis 606 $aEngineering mathematics 606 $aEngineering$xData processing 606 $aSequences (Mathematics) 606 $aIntegral equations 606 $aMathematical Methods in Physics 606 $aIntegral Transforms and Operational Calculus 606 $aMathematical and Computational Engineering Applications 606 $aSequences, Series, Summability 606 $aIntegral Equations 615 0$aMathematical physics. 615 0$aMathematical analysis. 615 0$aEngineering mathematics. 615 0$aEngineering$xData processing. 615 0$aSequences (Mathematics) 615 0$aIntegral equations. 615 14$aMathematical Methods in Physics. 615 24$aIntegral Transforms and Operational Calculus. 615 24$aMathematical and Computational Engineering Applications. 615 24$aSequences, Series, Summability. 615 24$aIntegral Equations. 676 $a515/.4 700 $aNahin$b Paul J$4aut$4http://id.loc.gov/vocabulary/relators/aut$048655 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910300406903321 996 $aInside interesting integrals$91467023 997 $aUNINA