LEADER 04400nam 22008175 450 001 9910300393703321 005 20200701100345.0 010 $a4-431-54777-0 024 7 $a10.1007/978-4-431-54777-8 035 $a(CKB)2550000001199773 035 $a(EBL)1636795 035 $a(OCoLC)870162440 035 $a(SSID)ssj0001158379 035 $a(PQKBManifestationID)11635980 035 $a(PQKBTitleCode)TC0001158379 035 $a(PQKBWorkID)11101458 035 $a(PQKB)10189680 035 $a(MiAaPQ)EBC1636795 035 $a(DE-He213)978-4-431-54777-8 035 $a(PPN)176126414 035 $a(EXLCZ)992550000001199773 100 $a20140115d2014 u| 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aFinite Sample Analysis in Quantum Estimation /$fby Takanori Sugiyama 205 $a1st ed. 2014. 210 1$aTokyo :$cSpringer Japan :$cImprint: Springer,$d2014. 215 $a1 online resource (125 p.) 225 1 $aSpringer Theses, Recognizing Outstanding Ph.D. Research,$x2190-5053 300 $aDescription based upon print version of record. 311 $a4-431-54776-2 320 $aIncludes bibliographical references at the end of each chapters. 327 $aIntroduction -- Quantum Mechanics and Quantum Estimation ? Background and Problems in Quantum Estimation -- Mathematical Statistics ? Basic Concepts and Theoretical Tools for Finite Sample Analysis -- Evaluation of Estimation Precision in Test of Bell-type Correlations -- Evaluation of Estimation Precision in Quantum Tomography -- Improvement of Estimation Precision by Adaptive Design of Experiments -- Summary and Outlook. 330 $aIn this thesis, the author explains the background of problems in quantum estimation, the necessary conditions required for estimation precision benchmarks that are applicable and meaningful for evaluating data in quantum information experiments, and provides examples of such benchmarks. The author develops mathematical methods in quantum estimation theory and analyzes the benchmarks in tests of Bell-type correlation and quantum tomography with those methods. Above all, a set of explicit formulae for evaluating the estimation precision in quantum tomography with finite data sets is derived, in contrast to the standard quantum estimation theory, which can deal only with infinite samples. This is the first result directly applicable to the evaluation of estimation errors in quantum tomography experiments, allowing experimentalists to guarantee estimation precision and verify quantitatively that their preparation is reliable. 410 0$aSpringer Theses, Recognizing Outstanding Ph.D. Research,$x2190-5053 606 $aQuantum theory 606 $aQuantum computers 606 $aSpintronics 606 $aQuantum optics 606 $aPhysical measurements 606 $aMeasurement 606 $aData structures (Computer science) 606 $aQuantum Physics$3https://scigraph.springernature.com/ontologies/product-market-codes/P19080 606 $aQuantum Information Technology, Spintronics$3https://scigraph.springernature.com/ontologies/product-market-codes/P31070 606 $aQuantum Optics$3https://scigraph.springernature.com/ontologies/product-market-codes/P24050 606 $aMeasurement Science and Instrumentation$3https://scigraph.springernature.com/ontologies/product-market-codes/P31040 606 $aData Structures and Information Theory$3https://scigraph.springernature.com/ontologies/product-market-codes/I15009 615 0$aQuantum theory. 615 0$aQuantum computers. 615 0$aSpintronics. 615 0$aQuantum optics. 615 0$aPhysical measurements. 615 0$aMeasurement. 615 0$aData structures (Computer science) 615 14$aQuantum Physics. 615 24$aQuantum Information Technology, Spintronics. 615 24$aQuantum Optics. 615 24$aMeasurement Science and Instrumentation. 615 24$aData Structures and Information Theory. 676 $a530.133 700 $aSugiyama$b Takanori$4aut$4http://id.loc.gov/vocabulary/relators/aut$0792024 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910300393703321 996 $aFinite Sample Analysis in Quantum Estimation$91770904 997 $aUNINA