LEADER 04115nam 22007455 450 001 9910300392103321 005 20200701163348.0 010 $a3-319-01514-1 024 7 $a10.1007/978-3-319-01514-9 035 $a(CKB)2670000000423554 035 $a(EBL)1466875 035 $a(OCoLC)876509011 035 $a(SSID)ssj0001010794 035 $a(PQKBManifestationID)11556860 035 $a(PQKBTitleCode)TC0001010794 035 $a(PQKBWorkID)11003082 035 $a(PQKB)11268665 035 $a(MiAaPQ)EBC1466875 035 $a(DE-He213)978-3-319-01514-9 035 $a(PPN)172424070 035 $a(EXLCZ)992670000000423554 100 $a20130905d2014 u| 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aNano-photonics in III-V Semiconductors for Integrated Quantum Optical Circuits /$fby Nicholas Andrew Wasley 205 $a1st ed. 2014. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2014. 215 $a1 online resource (139 p.) 225 1 $aSpringer Theses, Recognizing Outstanding Ph.D. Research,$x2190-5053 300 $aDoctoral Thesis accepted by the University of Sheffield, UK. 311 $a3-319-01513-3 320 $aIncludes bibliographical references. 327 $aIntroduction -- Experimental methods -- Disorder limited photon propagation and Anderson localisation in photonic crystal waveguides -- On-chip interface for in-plane polarisation transfer for quantum information processing -- Direct in-plane readout of QD spin -- InP QDs in GaInP photonic crystal cavities -- Development of additional technological approaches -- Conclusions and future directions. 330 $aThis thesis breaks new ground in the physics of photonic circuits for quantum optical applications. The photonic circuits are based either on ridge waveguides or photonic crystals, with embedded quantum dots providing the single qubit, quantum optical emitters. The highlight of the thesis is the first demonstration of a spin-photon interface using an all-waveguide geometry, a vital component of a quantum optical circuit, based on deterministic single photon emission from a single quantum dot. The work makes a further important contribution to the field by demonstrating  the effects and limitations that inevitable disorder places on photon propagation in photonic crystal waveguides, a further key component of quantum optical circuits. Overall the thesis offers a number of highly novel contributions to the field; those on chip circuits may prove to be the only means of scaling up the highly promising quantum-dot-based quantum information technology. 410 0$aSpringer Theses, Recognizing Outstanding Ph.D. Research,$x2190-5053 606 $aSemiconductors 606 $aQuantum optics 606 $aQuantum computers 606 $aSpintronics 606 $aLasers 606 $aPhotonics 606 $aSemiconductors$3https://scigraph.springernature.com/ontologies/product-market-codes/P25150 606 $aQuantum Optics$3https://scigraph.springernature.com/ontologies/product-market-codes/P24050 606 $aQuantum Information Technology, Spintronics$3https://scigraph.springernature.com/ontologies/product-market-codes/P31070 606 $aOptics, Lasers, Photonics, Optical Devices$3https://scigraph.springernature.com/ontologies/product-market-codes/P31030 615 0$aSemiconductors. 615 0$aQuantum optics. 615 0$aQuantum computers. 615 0$aSpintronics. 615 0$aLasers. 615 0$aPhotonics. 615 14$aSemiconductors. 615 24$aQuantum Optics. 615 24$aQuantum Information Technology, Spintronics. 615 24$aOptics, Lasers, Photonics, Optical Devices. 676 $a530 676 $a621.36/5 700 $aWasley$b Nicholas Andrew$4aut$4http://id.loc.gov/vocabulary/relators/aut$01058900 906 $aBOOK 912 $a9910300392103321 996 $aNano-photonics in III-V Semiconductors for Integrated Quantum Optical Circuits$92503093 997 $aUNINA