LEADER 04549nam 22008535 450 001 9910300388403321 005 20200701060415.0 010 $a3-319-05272-1 024 7 $a10.1007/978-3-319-05272-4 035 $a(CKB)3710000000119104 035 $a(DE-He213)978-3-319-05272-4 035 $a(SSID)ssj0001247756 035 $a(PQKBManifestationID)11986708 035 $a(PQKBTitleCode)TC0001247756 035 $a(PQKBWorkID)11196348 035 $a(PQKB)10650258 035 $a(MiAaPQ)EBC6311416 035 $a(MiAaPQ)EBC1731037 035 $a(Au-PeEL)EBL1731037 035 $a(CaPaEBR)ebr10976309 035 $a(OCoLC)880840501 035 $a(PPN)178781169 035 $a(EXLCZ)993710000000119104 100 $a20140522d2014 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aStrongly Nonlinear Oscillators $eAnalytical Solutions /$fby Livija Cveticanin 205 $a1st ed. 2014. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2014. 215 $a1 online resource (IX, 239 p. 74 illus., 12 illus. in color.) 225 1 $aUndergraduate Lecture Notes in Physics,$x2192-4791 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a3-319-05271-3 327 $aIntroduction -- Nonlinear Oscillators -- Pure Nonlinear Oscillator -- Free Vibrations -- Oscillators with Time-Variable Parameters -- Forced Vibrations -- Two-Degree-Of-Freedom Oscillator -- Chaos in Oscillators. 330 $aThis book provides the presentation of the motion of pure nonlinear oscillatory systems and various solution procedures which give the approximate solutions of the strong nonlinear oscillator equations. The book presents the original author?s method for the analytical solution procedure of the pure nonlinear oscillator system. After an introduction, the physical explanation of the pure nonlinearity and of the pure nonlinear oscillator is given. The analytical solution for free and forced vibrations of the one-degree-of-freedom strong nonlinear system with constant and time variable parameter is considered. Special attention is given to the one and two mass oscillatory systems with two-degrees-of-freedom. The criteria for the deterministic chaos in ideal and non-ideal pure nonlinear oscillators are derived analytically. The method for suppressing chaos is developed. Important problems are discussed in didactic exercises. The book is self-consistent and suitable as a textbook for students and also for professionals and engineers who apply these techniques to the field of nonlinear oscillations. 410 0$aUndergraduate Lecture Notes in Physics,$x2192-4791 606 $aStatistical physics 606 $aApplied mathematics 606 $aEngineering mathematics 606 $aMathematical physics 606 $aPhysics 606 $aVibration 606 $aDynamics 606 $aDynamics 606 $aApplications of Nonlinear Dynamics and Chaos Theory$3https://scigraph.springernature.com/ontologies/product-market-codes/P33020 606 $aMathematical and Computational Engineering$3https://scigraph.springernature.com/ontologies/product-market-codes/T11006 606 $aMathematical Applications in the Physical Sciences$3https://scigraph.springernature.com/ontologies/product-market-codes/M13120 606 $aMathematical Methods in Physics$3https://scigraph.springernature.com/ontologies/product-market-codes/P19013 606 $aVibration, Dynamical Systems, Control$3https://scigraph.springernature.com/ontologies/product-market-codes/T15036 615 0$aStatistical physics. 615 0$aApplied mathematics. 615 0$aEngineering mathematics. 615 0$aMathematical physics. 615 0$aPhysics. 615 0$aVibration. 615 0$aDynamics. 615 0$aDynamics. 615 14$aApplications of Nonlinear Dynamics and Chaos Theory. 615 24$aMathematical and Computational Engineering. 615 24$aMathematical Applications in the Physical Sciences. 615 24$aMathematical Methods in Physics. 615 24$aVibration, Dynamical Systems, Control. 676 $a621.381533 700 $aCveticanin$b Livija$4aut$4http://id.loc.gov/vocabulary/relators/aut$0788086 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910300388403321 996 $aStrongly Nonlinear Oscillators$91770423 997 $aUNINA