LEADER 04588nam 22007215 450 001 9910300385203321 005 20200707022827.0 010 $a3-319-00425-5 024 7 $a10.1007/978-3-319-00425-9 035 $a(CKB)2670000000428583 035 $a(EBL)1466692 035 $a(SSID)ssj0001010788 035 $a(PQKBManifestationID)11582631 035 $a(PQKBTitleCode)TC0001010788 035 $a(PQKBWorkID)10999907 035 $a(PQKB)11095263 035 $a(MiAaPQ)EBC1466692 035 $a(DE-He213)978-3-319-00425-9 035 $a(PPN)172422299 035 $a(EXLCZ)992670000000428583 100 $a20130916d2014 u| 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aHadronic Transport Coefficients from Effective Field Theories$b[electronic resource] /$fby Juan M. Torres-Rincon 205 $a1st ed. 2014. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2014. 215 $a1 online resource (220 p.) 225 1 $aSpringer Theses, Recognizing Outstanding Ph.D. Research,$x2190-5053 300 $aDoctoral thesis accepted by the Universidad Complutense de Madrid, Spain. 311 $a3-319-00424-7 320 $aIncludes bibliographical references and index. 327 $aRelativistic Heavy Ion Collisions -- Boltzmann-Uehling-Uhlenbeck Equation -- Shear Viscosity and KSS Coefficient -- Bulk Viscosity -- Thermal and Electrical Conductivities -- Bhatnagar-Gross-Krook or Relaxation Time Approximation -- Strangeness Diffusion -- Charm Diffusion -- Linear Sigma Model and Phase Transitions -- Measurement of the Bulk Viscosity. 330 $aThis dissertation focuses on the calculation of transport coefficients in the matter created in a relativistic heavy-ion collision after chemical freeze-out. This matter can be well approximated using a pion gas out of equilibrium. We describe the theoretical framework needed to obtain the shear and bulk viscosities, the thermal and electrical conductivities and the flavor diffusion coefficients of a meson gas at low temperatures. To describe the interactions of the degrees of freedom, we use effective field theories with chiral and heavy quark symmetries. We subsequently introduce the unitarization methods in order to obtain a scattering amplitude that satisfies the unitarity condition exactly, then go on to calculate the transport properties of the low-temperature phase of quantum chromodynamics - the hadronic medium - which can be used in hydrodynamic simulations of a relativistic heavy-ion collision and its subsequent evolution. We show that the shear viscosity over entropy density exhibits a minimum in a phase transition by studying this coefficient in atomic Argon (around the liquid-gas phase transition) and in the linear sigma model in the limit of a large number of scalar fields (which presents a chiral phase transition). Finally, we provide an experimental method for estimating the bulk viscosity in relativistic heavy-ion collisions by performing correlations of the fluctuating components of the stress-energy tensor. 410 0$aSpringer Theses, Recognizing Outstanding Ph.D. Research,$x2190-5053 606 $aNuclear physics 606 $aHeavy ions 606 $aThermodynamics 606 $aMathematical physics 606 $aLow temperature physics 606 $aLow temperatures 606 $aNuclear Physics, Heavy Ions, Hadrons$3https://scigraph.springernature.com/ontologies/product-market-codes/P23010 606 $aThermodynamics$3https://scigraph.springernature.com/ontologies/product-market-codes/P21050 606 $aTheoretical, Mathematical and Computational Physics$3https://scigraph.springernature.com/ontologies/product-market-codes/P19005 606 $aLow Temperature Physics$3https://scigraph.springernature.com/ontologies/product-market-codes/P25130 615 0$aNuclear physics. 615 0$aHeavy ions. 615 0$aThermodynamics. 615 0$aMathematical physics. 615 0$aLow temperature physics. 615 0$aLow temperatures. 615 14$aNuclear Physics, Heavy Ions, Hadrons. 615 24$aThermodynamics. 615 24$aTheoretical, Mathematical and Computational Physics. 615 24$aLow Temperature Physics. 676 $a539.7216 700 $aTorres-Rincon$b Juan M$4aut$4http://id.loc.gov/vocabulary/relators/aut$0791331 906 $aBOOK 912 $a9910300385203321 996 $aHadronic Transport Coefficients from Effective Field Theories$91768706 997 $aUNINA