LEADER 04349nam 22006975 450 001 9910300384603321 005 20200702140447.0 010 $a3-319-07103-3 024 7 $a10.1007/978-3-319-07103-9 035 $a(CKB)3710000000125759 035 $a(EBL)1783011 035 $a(SSID)ssj0001276161 035 $a(PQKBManifestationID)11752310 035 $a(PQKBTitleCode)TC0001276161 035 $a(PQKBWorkID)11239048 035 $a(PQKB)10220543 035 $a(MiAaPQ)EBC1783011 035 $a(DE-He213)978-3-319-07103-9 035 $a(PPN)179768115 035 $a(EXLCZ)993710000000125759 100 $a20140603d2014 u| 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aIntegrated Devices for Quantum Information with Polarization Encoded Qubits /$fby Linda Sansoni 205 $a1st ed. 2014. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2014. 215 $a1 online resource (143 p.) 225 1 $aSpringer Theses, Recognizing Outstanding Ph.D. Research,$x2190-5053 300 $aDescription based upon print version of record. 311 $a1-322-13626-2 311 $a3-319-07102-5 320 $aIncludes bibliographical references. 327 $aPart I Quantum Information -- Quantum Information with Photonics -- Integrated Waveguide Technology -- Part II Integrated Devices for Quantum Information -- Polarization Dependent and Independent Devices -- Quantum Computation: Integrated Quantum Gates for Polarization -- Encoded Qubits -- Process Characterization -- Part III Quantum Simulation -- Introduction to Quantum Simulation -- Bosonic and Fermionic Quantum Walk -- um Transport in Presence of Disorder -- Conclusion. 330 $aQuantum information science has found great experimental success by exploiting single photons. To date, however, the majority of quantum optical experiments use large-scale (bulk) optical elements bolted down to an optical bench, an approach that ultimately limits the complexity and stability of the quantum circuits required for quantum science and technology. The realization of complex optical schemes involving large numbers of elements requires the introduction of waveguide technology to achieve the desired scalability, stability and miniaturization of the device. This thesis reports on surprising findings in the field of integrated devices for quantum information. Here the polarization of the photon is shown to offer a suitable degree of freedom for encoding quantum information in integrated systems. The most important results concern: the quantum interference of polarization entangled photons in an on-chip directional coupler; the realization of a Controlled-NOT (CNOT) gate operating with polarization qubits; the realization of a quantum walk of bosons and fermions in an ordered optical lattice; and the quantum simulation of Anderson localization of bosons and fermions simulated by polarization entangled photons in a disordered quantum walk. The findings presented in this thesis represent an important step towards the integration of a complete quantum photonic experiment in a chip. 410 0$aSpringer Theses, Recognizing Outstanding Ph.D. Research,$x2190-5053 606 $aQuantum computers 606 $aSpintronics 606 $aQuantum optics 606 $aQuantum physics 606 $aQuantum Information Technology, Spintronics$3https://scigraph.springernature.com/ontologies/product-market-codes/P31070 606 $aQuantum Optics$3https://scigraph.springernature.com/ontologies/product-market-codes/P24050 606 $aQuantum Physics$3https://scigraph.springernature.com/ontologies/product-market-codes/P19080 615 0$aQuantum computers. 615 0$aSpintronics. 615 0$aQuantum optics. 615 0$aQuantum physics. 615 14$aQuantum Information Technology, Spintronics. 615 24$aQuantum Optics. 615 24$aQuantum Physics. 676 $a535 700 $aSansoni$b Linda$4aut$4http://id.loc.gov/vocabulary/relators/aut$0791855 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910300384603321 996 $aIntegrated Devices for Quantum Information with Polarization Encoded Qubits$91770504 997 $aUNINA