LEADER 04568nam 22008175 450 001 9910300382003321 005 20200702110835.0 010 $a3-319-07722-8 024 7 $a10.1007/978-3-319-07722-2 035 $a(CKB)3710000000129307 035 $a(EBL)1783069 035 $a(SSID)ssj0001275472 035 $a(PQKBManifestationID)11727746 035 $a(PQKBTitleCode)TC0001275472 035 $a(PQKBWorkID)11235444 035 $a(PQKB)11095207 035 $a(MiAaPQ)EBC1783069 035 $a(DE-He213)978-3-319-07722-2 035 $a(PPN)179768212 035 $a(EXLCZ)993710000000129307 100 $a20140613d2014 u| 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aElectronic Properties of Graphene Heterostructures with Hexagonal Crystals /$fby John R. Wallbank 205 $a1st ed. 2014. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2014. 215 $a1 online resource (101 p.) 225 1 $aSpringer Theses, Recognizing Outstanding Ph.D. Research,$x2190-5053 300 $aDescription based upon print version of record. 311 $a1-322-13686-6 311 $a3-319-07721-X 320 $aIncludes bibliographical references at the end of each chapters. 327 $aMonolayer Graphene on a hBN Underlay -- Optical Absorption in Graphene-hBN Heterostructures -- Fractal Spectrum of Magnetic Minibands in Graphene-hBN Heterostructures -- Experimental Realisation of the Graphene-hBN Heterostructure -- Bilayer Graphene on hBN -- Monolayer Graphene with Almost Commensurate ?3 x ?3 Hexagonal Crystals -- Resonant Tunnelling in Graphene-Insulator-Graphene Heterostructures. 330 $aThe last decade has witnessed the discovery of, and dramatic progress in understanding the physics of graphene and related two-dimensional materials. The development of methods for manufacturing and aligning high-quality two-dimensional crystals has facilitated the creation of a new generation of materials: the heterostructures of graphene with hexagonal crystals, in which the graphene electrons acquire new, qualitatively different properties. This thesis provides a comprehensive theoretical framework in which to understand these heterostructures, based on the tight binding model, perturbation theory, group theory and the concept of the moire superlattice (all of which are elucidated). It explains how graphene heterostructures provide new opportunities for tailoring band structure, such as creating additional Dirac points or opening band gaps, and how they manifest themselves in transport measurements, optical absorption spectra and the fractal Hofstadter spectra. Also considered are the heterostructures of bilayer graphene and resonant tunneling in aligned graphene/insulator/graphene devices. 410 0$aSpringer Theses, Recognizing Outstanding Ph.D. Research,$x2190-5053 606 $aSurfaces (Physics) 606 $aInterfaces (Physical sciences) 606 $aThin films 606 $aOptical materials 606 $aElectronics$xMaterials 606 $aSpectrum analysis 606 $aMicroscopy 606 $aMaterials?Surfaces 606 $aSurface and Interface Science, Thin Films$3https://scigraph.springernature.com/ontologies/product-market-codes/P25160 606 $aOptical and Electronic Materials$3https://scigraph.springernature.com/ontologies/product-market-codes/Z12000 606 $aSpectroscopy and Microscopy$3https://scigraph.springernature.com/ontologies/product-market-codes/P31090 606 $aSurfaces and Interfaces, Thin Films$3https://scigraph.springernature.com/ontologies/product-market-codes/Z19000 615 0$aSurfaces (Physics) 615 0$aInterfaces (Physical sciences) 615 0$aThin films. 615 0$aOptical materials. 615 0$aElectronics$xMaterials. 615 0$aSpectrum analysis. 615 0$aMicroscopy. 615 0$aMaterials?Surfaces. 615 14$aSurface and Interface Science, Thin Films. 615 24$aOptical and Electronic Materials. 615 24$aSpectroscopy and Microscopy. 615 24$aSurfaces and Interfaces, Thin Films. 676 $a546.68142 700 $aWallbank$b John R$4aut$4http://id.loc.gov/vocabulary/relators/aut$0791861 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910300382003321 996 $aElectronic Properties of Graphene Heterostructures with Hexagonal Crystals$91770510 997 $aUNINA