LEADER 04128nam 22008175 450 001 9910300375203321 005 20200702140039.0 010 $a3-319-07097-5 024 7 $a10.1007/978-3-319-07097-1 035 $a(CKB)3710000000129243 035 $a(EBL)1783010 035 $a(SSID)ssj0001276546 035 $a(PQKBManifestationID)11842628 035 $a(PQKBTitleCode)TC0001276546 035 $a(PQKBWorkID)11239484 035 $a(PQKB)11439207 035 $a(MiAaPQ)EBC1783010 035 $a(DE-He213)978-3-319-07097-1 035 $a(PPN)179768107 035 $a(EXLCZ)993710000000129243 100 $a20140610d2014 u| 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aMacroscopic Matter Wave Interferometry /$fby Stefan Nimmrichter 205 $a1st ed. 2014. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2014. 215 $a1 online resource (286 p.) 225 1 $aSpringer Theses, Recognizing Outstanding Ph.D. Research,$x2190-5053 300 $a"Doctoral Thesis accepted by the University of Vienna, Austria"--T.p. 311 $a1-322-13625-4 311 $a3-319-07096-7 320 $aIncludes bibliographical references. 327 $aIntroduction -- Interaction of Polarizable Particles with Light -- Near-Field Interference Techniques with Heavy Molecules and Nanoclusters -- Classicalization and the Macroscopicity of Quantum Superposition States -- Conclusion and Outlook -- Appendix A Light-Matter Interaction -- Appendix B Matter-Wave Interferometry -- Appendix C Classicalization and Macroscopicity. 330 $aMatter?wave interferometry is a promising and successful way to explore truly macroscopic quantum phenomena and probe the validity of quantum theory at the borderline to the classic world. Indeed, we may soon witness quantum superpositions with nano to micrometer-sized objects. Yet, venturing deeper into the macroscopic domain is not only an experimental but also a theoretical endeavour: new interferometers must be conceived, sources of noise and decoherence identified, size effects understood, and possible modifications of the theory taken into account. This thesis provides the theoretical background to recent advances in molecule and nanoparticle interferometry. In addition, it contains a physical and objective method to assess the degree of macroscopicity of such experiments, ranking them among other macroscopic quantum superposition phenomena. 410 0$aSpringer Theses, Recognizing Outstanding Ph.D. Research,$x2190-5053 606 $aQuantum physics 606 $aAtoms 606 $aPhysics 606 $aPhysical measurements 606 $aMeasurement    606 $aNanoscale science 606 $aNanoscience 606 $aNanostructures 606 $aQuantum Physics$3https://scigraph.springernature.com/ontologies/product-market-codes/P19080 606 $aAtomic, Molecular, Optical and Plasma Physics$3https://scigraph.springernature.com/ontologies/product-market-codes/P24009 606 $aMeasurement Science and Instrumentation$3https://scigraph.springernature.com/ontologies/product-market-codes/P31040 606 $aNanoscale Science and Technology$3https://scigraph.springernature.com/ontologies/product-market-codes/P25140 615 0$aQuantum physics. 615 0$aAtoms. 615 0$aPhysics. 615 0$aPhysical measurements. 615 0$aMeasurement   . 615 0$aNanoscale science. 615 0$aNanoscience. 615 0$aNanostructures. 615 14$aQuantum Physics. 615 24$aAtomic, Molecular, Optical and Plasma Physics. 615 24$aMeasurement Science and Instrumentation. 615 24$aNanoscale Science and Technology. 676 $a535.470287 700 $aNimmrichter$b Stefan$4aut$4http://id.loc.gov/vocabulary/relators/aut$0791853 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910300375203321 996 $aMacroscopic Matter Wave Interferometry$91770502 997 $aUNINA