LEADER 04137nam 22008055 450 001 9910300370003321 005 20200705024755.0 010 $a4-431-54526-3 024 7 $a10.1007/978-4-431-54526-2 035 $a(CKB)3710000000078918 035 $a(DE-He213)978-4-431-54526-2 035 $a(SSID)ssj0001090641 035 $a(PQKBManifestationID)11706898 035 $a(PQKBTitleCode)TC0001090641 035 $a(PQKBWorkID)11021075 035 $a(PQKB)11305490 035 $a(MiAaPQ)EBC6314392 035 $a(MiAaPQ)EBC1591860 035 $a(Au-PeEL)EBL1591860 035 $a(CaPaEBR)ebr10976314 035 $a(OCoLC)922907333 035 $a(PPN)176126228 035 $a(EXLCZ)993710000000078918 100 $a20131206d2014 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aElectricity and Magnetism$b[electronic resource] $eNew Formulation by Introduction of Superconductivity /$fby Teruo Matsushita 205 $a1st ed. 2014. 210 1$aTokyo :$cSpringer Japan :$cImprint: Springer,$d2014. 215 $a1 online resource (XIII, 384 p. 286 illus., 1 illus. in color.) 225 1 $aUndergraduate Lecture Notes in Physics,$x2192-4791 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a4-431-54525-5 320 $aIncludes bibliographical references and index. 327 $aPart I Static Electric Phenomena -- Electrostatic Field -- Conductors -- Conductor System in Vacuum -- Dielectric Materials -- Steady Current -- Part II Static Magnetic Phenomena -- Current and Magnetic Flux Density -- Superconductors -- Current Systems -- Magnetic Materials -- Part III Time- Dependent Electromagnetic Phenomena -- Electromagnetic Induction -- Displacement Current and Maxwell's Equations -- Electromagnetic Wave. 330 $aThe author introduces the concept that superconductivity can establish a perfect formalism of electricity and magnetism. The correspondence of conductors that exhibit perfect electrostatic shielding (E=0) in the static condition and superconductors that show perfect diamagnetism (B=0) is given to help readers understand the relationship between electricity and magnetism. Another helpful aspect with the introduction of the superconductivity feature perfect diamagnetism is that the correspondence in the development of the expression of magnetic energy and electric energy is clearly shown. Additionally, the basic mathematical operation and proofs are shown in an appendix, and there is full use of examples and exercises in each chapter with thorough answers. 410 0$aUndergraduate Lecture Notes in Physics,$x2192-4791 606 $aOptics 606 $aElectrodynamics 606 $aSuperconductivity 606 $aSuperconductors 606 $aPhysics 606 $aElectrical engineering 606 $aClassical Electrodynamics$3https://scigraph.springernature.com/ontologies/product-market-codes/P21070 606 $aStrongly Correlated Systems, Superconductivity$3https://scigraph.springernature.com/ontologies/product-market-codes/P25064 606 $aMathematical Methods in Physics$3https://scigraph.springernature.com/ontologies/product-market-codes/P19013 606 $aElectrical Engineering$3https://scigraph.springernature.com/ontologies/product-market-codes/T24000 615 0$aOptics. 615 0$aElectrodynamics. 615 0$aSuperconductivity. 615 0$aSuperconductors. 615 0$aPhysics. 615 0$aElectrical engineering. 615 14$aClassical Electrodynamics. 615 24$aStrongly Correlated Systems, Superconductivity. 615 24$aMathematical Methods in Physics. 615 24$aElectrical Engineering. 676 $a537.623 700 $aMatsushita$b Teruo$4aut$4http://id.loc.gov/vocabulary/relators/aut 701 $aMatsushita$b Teruo$f1948-$0853717 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910300370003321 996 $aElectricity and magnetism$92882112 997 $aUNINA