LEADER 03528nam 22006255 450 001 9910300364903321 005 20251214171142.0 010 $a9781484230541 010 $a148423054X 024 7 $a10.1007/978-1-4842-3054-1 035 $a(CKB)4100000002485253 035 $a(MiAaPQ)EBC5307290 035 $a(DE-He213)978-1-4842-3054-1 035 $a(CaSebORM)9781484230541 035 $a(PPN)22464100X 035 $a(OCoLC)1028639698 035 $a(OCoLC)on1028639698 035 $a(EXLCZ)994100000002485253 100 $a20180221d2018 u| 0 101 0 $aeng 135 $aurcnu|||||||| 181 $2rdacontent 182 $2rdamedia 183 $2rdacarrier 200 10$aPractical Data Science $eA Guide to Building the Technology Stack for Turning Data Lakes into Business Assets /$fby Andreas François Vermeulen 205 $a1st ed. 2018. 210 1$aBerkeley, CA :$cApress :$cImprint: Apress,$d2018. 215 $a1 online resource (824 pages) 300 $aIncludes index. 311 08$a9781484230534 311 08$a1484230531 327 $aChapter 1: Data Science Technology Stack -- Chapter 2: Vermeulen - Krennwallner - Hillman - Clark -- Chapter 3: Layered Framework -- Chapter 4: Business Layer -- Chapter 5: Utility Layer -- Chapter 6: Three Management Layers -- Chapter 7: Retrieve Super Step -- Chapter 8: Assess Super Step -- Chapter 9: Process Super Step -- Chapter 10: Transform Super Step -- Chapter 11: Organize and Report Super Step -- . 330 $aLearn how to build a data science technology stack and perform good data science with repeatable methods. You will learn how to turn data lakes into business assets. The data science technology stack demonstrated in Practical Data Science is built from components in general use in the industry. Data scientist Andreas Vermeulen demonstrates in detail how to build and provision a technology stack to yield repeatable results. He shows you how to apply practical methods to extract actionable business knowledge from data lakes consisting of data from a polyglot of data types and dimensions. What You'll Learn: Become fluent in the essential concepts and terminology of data science and data engineering Build and use a technology stack that meets industry criteria Master the methods for retrieving actionable business knowledge Coordinate the handling of polyglot data types in a data lake for repeatable results. 606 $aData mining 606 $aBig data 606 $aData structures (Computer science) 606 $aData Mining and Knowledge Discovery$3https://scigraph.springernature.com/ontologies/product-market-codes/I18030 606 $aBig Data/Analytics$3https://scigraph.springernature.com/ontologies/product-market-codes/522070 606 $aBig Data$3https://scigraph.springernature.com/ontologies/product-market-codes/I29120 606 $aData Storage Representation$3https://scigraph.springernature.com/ontologies/product-market-codes/I15025 615 0$aData mining. 615 0$aBig data. 615 0$aData structures (Computer science) 615 14$aData Mining and Knowledge Discovery. 615 24$aBig Data/Analytics. 615 24$aBig Data. 615 24$aData Storage Representation. 676 $a005.73 700 $aVermeulen$b Andreas Franc?ois$4aut$4http://id.loc.gov/vocabulary/relators/aut$00 801 0$bUMI 801 1$bUMI 906 $aBOOK 912 $a9910300364903321 996 $aPractical Data Science$92519497 997 $aUNINA