LEADER 03807nam 22007215 450 001 9910300258003321 005 20200630123445.0 010 $a3-319-22870-6 024 7 $a10.1007/978-3-319-22870-9 035 $a(CKB)3710000000521701 035 $a(SSID)ssj0001584843 035 $a(PQKBManifestationID)16265520 035 $a(PQKBTitleCode)TC0001584843 035 $a(PQKBWorkID)14864128 035 $a(PQKB)11194300 035 $a(DE-He213)978-3-319-22870-9 035 $a(MiAaPQ)EBC6311337 035 $a(MiAaPQ)EBC5578211 035 $a(Au-PeEL)EBL5578211 035 $a(OCoLC)932002632 035 $a(PPN)190532106 035 $a(EXLCZ)993710000000521701 100 $a20151020d2015 u| 0 101 0 $aeng 135 $aurnn#008mamaa 181 $ctxt 182 $cc 183 $acr 200 14$aThe Analysis and Geometry of Hardy's Inequality /$fby Alexander A. Balinsky, W. Desmond Evans, Roger T. Lewis 205 $a1st ed. 2015. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2015. 215 $a1 online resource (XV, 263 p. 3 illus.) 225 1 $aUniversitext,$x0172-5939 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a3-319-22869-2 327 $aHardy, Sobolev, and CLR inequalities -- Boundary curvatures and the distance function -- Hardy's inequality on domains -- Hardy, Sobolev, Maz'ya (HSM) inequalities -- Inequalities and operators involving magnetic elds -- The Rellich inequality. 330 $aThis volume presents advances that have been made over recent decades in areas of research featuring Hardy's inequality and related topics. The inequality and its extensions and refinements are not only of intrinsic interest but are indispensable tools in many areas of mathematics and mathematical physics. Hardy inequalities on domains have a substantial role and this necessitates a detailed investigation of significant geometric properties of a domain and its boundary. Other topics covered in this volume are Hardy- Sobolev-Maz?ya inequalities; inequalities of Hardy-type involving magnetic fields; Hardy, Sobolev and Cwikel-Lieb-Rosenbljum inequalities for Pauli operators; the Rellich inequality.   The Analysis and Geometry of Hardy?s Inequality provides an up-to-date account of research in areas of contemporary interest and would be suitable for a graduate course in mathematics or physics. A good basic knowledge of real and complex analysis is a prerequisite. 410 0$aUniversitext,$x0172-5939 606 $aMathematical analysis 606 $aAnalysis (Mathematics) 606 $aDifferential equations, Partial 606 $aMathematical physics 606 $aAnalysis$3https://scigraph.springernature.com/ontologies/product-market-codes/M12007 606 $aPartial Differential Equations$3https://scigraph.springernature.com/ontologies/product-market-codes/M12155 606 $aMathematical Physics$3https://scigraph.springernature.com/ontologies/product-market-codes/M35000 615 0$aMathematical analysis. 615 0$aAnalysis (Mathematics). 615 0$aDifferential equations, Partial. 615 0$aMathematical physics. 615 14$aAnalysis. 615 24$aPartial Differential Equations. 615 24$aMathematical Physics. 676 $a512.97 700 $aBalinsky$b Alexander A$4aut$4http://id.loc.gov/vocabulary/relators/aut$0755654 702 $aEvans$b W. Desmond$4aut$4http://id.loc.gov/vocabulary/relators/aut 702 $aLewis$b Roger T$4aut$4http://id.loc.gov/vocabulary/relators/aut 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910300258003321 996 $aThe Analysis and Geometry of Hardy's Inequality$92541514 997 $aUNINA