LEADER 01499oam 2200409Ka 450 001 9910695052703321 005 20090518151123.0 035 $a(CKB)5470000002366193 035 $a(OCoLC)67776094 035 $a(EXLCZ)995470000002366193 100 $a20060427d2006 ua 0 101 0 $aeng 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aUsers guide for FRCS$b[electronic resource] $efuel reduction cost simulator software /$fRoger D. Fight, Bruce R. Hartsough, and Peter Noordijk 210 1$a[Portland, OR] :$cUSDA, Forest Service, Pacific Northwest Research Station,$d[2006] 215 $aiv, 23 pages $cdigital, PDF file 300 $aTitle from title screen (viewed on Apr. 27, 2006). 300 $a"PNW-GTR-668." 300 $a"January 2006." 320 $aIncludes bibliographical references. 517 $aUsers guide for FRCS 606 $aFuel reduction (Wildfire prevention)$zUnited States$xComputer simulation$vHandbooks, manuals, etc 608 $aHandbooks and manuals.$2lcgft 615 0$aFuel reduction (Wildfire prevention)$xComputer simulation 700 $aFight$b Roger D$01381124 701 $aHartsough$b Bruce R$01381988 701 $aNoordijk$b Peter$01381989 712 02$aPacific Northwest Research Station (Portland, Or.) 801 0$bGPO 801 1$bGPO 801 2$bGPO 906 $aBOOK 912 $a9910695052703321 996 $aUsers guide for FRCS$93424906 997 $aUNINA LEADER 03723nam 22006735 450 001 9910300253703321 005 20221118234057.0 010 $a3-319-20997-3 024 7 $a10.1007/978-3-319-20997-5 035 $a(CKB)3710000000492413 035 $a(EBL)4178362 035 $a(SSID)ssj0001585099 035 $a(PQKBManifestationID)16265773 035 $a(PQKBTitleCode)TC0001585099 035 $a(PQKBWorkID)14865504 035 $a(PQKB)10266295 035 $a(DE-He213)978-3-319-20997-5 035 $a(MiAaPQ)EBC4178362 035 $a(PPN)190533846 035 $a(EXLCZ)993710000000492413 100 $a20151012d2015 u| 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aEvolution equations of von Karman type /$fby Pascal Cherrier, Albert Milani 205 $a1st ed. 2015. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2015. 215 $a1 online resource (155 p.) 225 1 $aLecture Notes of the Unione Matematica Italiana,$x1862-9113 ;$v17 300 $aDescription based upon print version of record. 311 $a3-319-20996-5 320 $aIncludes bibliographical references and index. 327 $aOperators and Spaces -- Weak Solutions --  Strong Solutions, m + k _ 4 -- Semi-Strong Solutions, m = 2, k = 1. 330 $aIn these notes we consider two kinds of nonlinear evolution problems of von Karman type on Euclidean spaces of arbitrary even dimension. Each of these problems consists of a system that results from the coupling of two highly nonlinear partial differential equations, one hyperbolic or parabolic and the other elliptic. These systems take their name from a formal analogy with the von Karman equations in the theory of elasticity in two dimensional space. We establish local (respectively global) results for strong (resp., weak) solutions of these problems and corresponding well-posedness results in the Hadamard sense. Results are found by obtaining regularity estimates on solutions which are limits of a suitable Galerkin approximation scheme. The book is intended as a pedagogical introduction to a number of meaningful application of classical methods in nonlinear Partial Differential Equations of Evolution. The material is self-contained and most proofs are given in full detail. The interested reader will gain a deeper insight into the power of nontrivial a priori estimate methods in the qualitative study of nonlinear differential equations. 410 0$aLecture Notes of the Unione Matematica Italiana,$x1862-9113 ;$v17 606 $aDifferential equations, Partial 606 $aPhysics 606 $aGeometry, Differential 606 $aPartial Differential Equations$3https://scigraph.springernature.com/ontologies/product-market-codes/M12155 606 $aMathematical Methods in Physics$3https://scigraph.springernature.com/ontologies/product-market-codes/P19013 606 $aDifferential Geometry$3https://scigraph.springernature.com/ontologies/product-market-codes/M21022 615 0$aDifferential equations, Partial. 615 0$aPhysics. 615 0$aGeometry, Differential. 615 14$aPartial Differential Equations. 615 24$aMathematical Methods in Physics. 615 24$aDifferential Geometry. 676 $a515.353 700 $aCherrier$b Pascal$4aut$4http://id.loc.gov/vocabulary/relators/aut$0477813 702 $aMilani$b Albert$4aut$4http://id.loc.gov/vocabulary/relators/aut 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910300253703321 996 $aEvolution equations of von Karman type$91522726 997 $aUNINA