LEADER 06518nam 22008535 450 001 9910300251003321 005 20220413170816.0 010 $a3-319-02666-6 024 7 $a10.1007/978-3-319-02666-4 035 $a(CKB)3710000000498952 035 $a(EBL)4178145 035 $a(SSID)ssj0001585144 035 $a(PQKBManifestationID)16265152 035 $a(PQKBTitleCode)TC0001585144 035 $a(PQKBWorkID)14865509 035 $a(PQKB)10002385 035 $a(DE-He213)978-3-319-02666-4 035 $a(MiAaPQ)EBC4178145 035 $a(PPN)190524596 035 $a(EXLCZ)993710000000498952 100 $a20151015d2015 u| 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aGeometric methods in PDE?s /$fedited by Giovanna Citti, Maria Manfredini, Daniele Morbidelli, Sergio Polidoro, Francesco Uguzzoni 205 $a1st ed. 2015. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2015. 215 $a1 online resource (381 p.) 225 1 $aSpringer INdAM Series,$x2281-518X ;$v13 300 $aDescription based upon print version of record. 311 $a3-319-02665-8 320 $aIncludes bibliographical references at the end of each chapters. 327 $a1 On Friedrichs commutators lemma for Hardy spaces and applications. Jorge Hounie -- 2 On the Hardy constant of some non-convex planar domains. Gerassimos Barbatis and Achilles Tertikas -- 3 Sharp singular Trudinger-Moser-Adams type inequalities with exact growth. Nguyen Lam and Guozhen Lu. 4 A Quantitative Lusin Theorem for Functions in BV. András Telcs and Vincenzo Vespri -- 5 X-Elliptic Harmonic Maps. Sorin Dragomir -- 6 Sum operators and Fefferman - Phong inequalities. Giuseppe Di Fazio, Maria Stella Fanciullo, Pietro Zamboni -- 7 Lp-parabolic regularity and non-degenerate Ornstein-Uhlenbeck type Operators. Enrico Priola -- 8 Local solvability of nonsmooth Hörmander?s operators. Marco Bramanti -- 9 Multiple solutions for an eigenvalue problem involving non?local elliptic p?Laplacian operators. Patrizia Pucci and Sara Saldi -- 10 Uniqueness of solutions of a class of quasilinear subelliptic equations. Lorenzo D?Ambrosio and Enzo Mitidieri -- 11 Liouville type theorems for non-linear differential inequalities on Carnot groups. Luca Brandolini and Marco Magliaro -- 12 Modica type gradient estimates for reaction-diffusion equations. Agnid Banerjee and Nicola Garofalo -- 13 A few recent results on fully nonlinear pde?s. Italo Capuzzo Dolcetta -- 14 Hölder regularity of the gradient for solutions of fully nonlinear equations with sub linear first order term. Isabeau Birindelli and Francoise Demengel -- 15 The Reflector Problem and the inverse square law. Cristian E. Gutiérrez and Ahmad Sabra -- 16 Gagliardo-Nirenberg inequalities for horizontal vector fields in the Engel group and in the 7-dimensional quaternionic Heisenberg group. Annalisa Baldi, Bruno Franchi and Francesca Tripaldi -- 17 Regularity of the free boundary in problems with distributed sources. Daniela De Silva, Fausto Ferrari, Sandro Salsa -- 18 The role of fundamental solution in Potential and Regularity Theory for subelliptic PDE. Andrea Bonfiglioli, Giovanna Citti, Giovanni Cupini, Maria Manfredini, Annamaria Montanari, Daniele Morbidelli, Andrea Pascucci, Sergio Polidoro, Francesco Uguzzoni. 330 $aThe analysis of PDEs is a prominent discipline in mathematics research, both in terms of its theoretical aspects and its relevance in applications. In recent years, the geometric properties of linear and nonlinear second order PDEs of elliptic and parabolic type have been extensively studied by many outstanding researchers. This book collects contributions from a selected group of leading experts who took part in the INdAM meeting "Geometric methods in PDEs", on the occasion of the 70th birthday of Ermanno Lanconelli. They describe a number of new achievements and/or the state of the art in their discipline of research, providing readers an overview of recent progress and future research trends in PDEs. In particular, the volume collects significant results for sub-elliptic equations, potential theory and diffusion equations, with an emphasis on comparing different methodologies and on their implications for theory and applications. . 410 0$aSpringer INdAM Series,$x2281-518X ;$v13 606 $aPartial differential equations 606 $aFunctional analysis 606 $aPotential theory (Mathematics) 606 $aCalculus of variations 606 $aFourier analysis 606 $aDifferential geometry 606 $aPartial Differential Equations$3https://scigraph.springernature.com/ontologies/product-market-codes/M12155 606 $aFunctional Analysis$3https://scigraph.springernature.com/ontologies/product-market-codes/M12066 606 $aPotential Theory$3https://scigraph.springernature.com/ontologies/product-market-codes/M12163 606 $aCalculus of Variations and Optimal Control; Optimization$3https://scigraph.springernature.com/ontologies/product-market-codes/M26016 606 $aFourier Analysis$3https://scigraph.springernature.com/ontologies/product-market-codes/M12058 606 $aDifferential Geometry$3https://scigraph.springernature.com/ontologies/product-market-codes/M21022 615 0$aPartial differential equations. 615 0$aFunctional analysis. 615 0$aPotential theory (Mathematics). 615 0$aCalculus of variations. 615 0$aFourier analysis. 615 0$aDifferential geometry. 615 14$aPartial Differential Equations. 615 24$aFunctional Analysis. 615 24$aPotential Theory. 615 24$aCalculus of Variations and Optimal Control; Optimization. 615 24$aFourier Analysis. 615 24$aDifferential Geometry. 676 $a515.353 702 $aCitti$b Giovanna$4edt$4http://id.loc.gov/vocabulary/relators/edt 702 $aManfredini$b Maria$4edt$4http://id.loc.gov/vocabulary/relators/edt 702 $aMorbidelli$b Daniele$4edt$4http://id.loc.gov/vocabulary/relators/edt 702 $aPolidoro$b Sergio$4edt$4http://id.loc.gov/vocabulary/relators/edt 702 $aUguzzoni$b Francesco$4edt$4http://id.loc.gov/vocabulary/relators/edt 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910300251003321 996 $aGeometric methods in PDE?s$91522490 997 $aUNINA