LEADER 05750nam 22007455 450 001 9910300250903321 005 20251230070113.0 010 $a81-322-2719-0 024 7 $a10.1007/978-81-322-2719-9 035 $a(CKB)3710000000596745 035 $a(EBL)4398758 035 $a(SSID)ssj0001653715 035 $a(PQKBManifestationID)16433716 035 $a(PQKBTitleCode)TC0001653715 035 $a(PQKBWorkID)14982999 035 $a(PQKB)10224312 035 $a(DE-He213)978-81-322-2719-9 035 $a(MiAaPQ)EBC4398758 035 $z(PPN)25886544X 035 $a(PPN)192220349 035 $a(EXLCZ)993710000000596745 100 $a20160208d2015 u| 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aNew Directions in Paraconsistent Logic $e5th WCP, Kolkata, India, February 2014 /$fedited by Jean-Yves Beziau, Mihir Chakraborty, Soma Dutta 205 $a1st ed. 2015. 210 1$aNew Delhi :$cSpringer India :$cImprint: Springer,$d2015. 215 $a1 online resource (542 p.) 225 1 $aSpringer Proceedings in Mathematics & Statistics,$x2194-1017 ;$v152 300 $aDescription based upon print version of record. 311 08$a81-322-2717-4 320 $aIncludes bibliographical references at the end of each chapters. 327 $aC. Baskent: Game Semantics and Paraconsistency -- D. Batens: Some adaptive contributions to Logics of Formal Inconsistency -- Jean-Yves Beziau and A. Franceschetto: Strong Three-Valued Paraconsistent Logics -- R. C. Ertola B. Rodriguez and C. Noguera I. lofent: Paraconsistent degree-preserving fuzzy logic -- B. Brown: Symmetrical Preservation Relations and Cognitive Commitments -- C. C. Caret Game Semantics and Paraconsistency -- N. da Costa and C. de Ronde: Quantum Physics and Paraconsistency -- V. Degauquier: A unified proof-theoretic approach of partial and paraconsistent three-valued logics -- S. Dutta: Consequence and Inconsistency: Paraconsistent Logics -- E. Ficara:Negation and the Metaphysical Foundations of Logic -- H. Field: Restricted Quantification in Paraconsistent and Other Nonclassical Logics -- D. Gangopadhyay: Unscrambling the ?Copenhagen omelet? in paraconsistent term -- P. Greenough: Going Glutty, Staying Classical -- C. Heunen: Combining logical viewpoints in quantum theory -- R. I. Ingalalli: Consistency in Indian Logic -- T. Jarmuzek: Tableau metatheory for paraconsistent logics defined by possible world's semantics -- P. Jetli: Aristotle?s Syllogistic Logic is a Paraconsistent Logic -- H. Kurokawa: Hypersequent Calculi for Dual-superintuitionstic Logics and an Extension of the Logic Cube -- O. Korkmaz: A paraconsistent solution to Kratzer?s modal semantics -- H. Omori: Naive set theories based on expansions of BD enriched by classical negation -- A. Moretti and R. Pélissier: Many-valuedness and paraconsistency in a 3-oppositional quadrisimplex of sheaves -- C. Mortensen: Wedge Sum as Inconsistent -- A. Pietruszczak and M. Nasieniewski: Modal logics connected to Jaskowski's logic D2 -- G. Priest: The Adventures of the Catuskoti -- G. Pulcini: Towards a unified setting for non-monotonicity and paraconsistency -- V. Puncochár:Internal and External logics of Nelson Models -- F. Putte: Adaptive Logics and Selection Function -- D. Skurt: Iterated preferential models as a strategy to make many-valued paraconsistent logics non-monotonic -- S. Tarafder and M. Chakraborty: The Logic LS3 and its Comparison with other Three-Valued Paraconsistent Logics -- E. Turunen: Two Paraconsistent Semantics for Pavelka's Fuzzy Logic -- M. Vacek: Paraconsistency and Impossible Worlds -- P. Verdée:Paraconsistent and classical negation in the context of relevant implication -- D. Zaitsev: Propositions, Paraconsistency, Paracompleteness. 330 $aThe present book discusses all aspects of paraconsistent logic, including the latest findings, and its various systems. It includes papers by leading international researchers, which address the subject in many different ways: development of abstract paraconsistent systems and new theorems about them; studies of the connections between these systems and other non-classical logics, such as non-monotonic, many-valued, relevant, paracomplete and fuzzy logics; philosophical interpretations of these constructions; and applications to other sciences, in particular quantum physics and mathematics. Reasoning with contradictions is the challenge of paraconsistent logic. The book will be of interest to graduate students and researchers working in mathematical logic, computer science, philosophical logic, linguistics and physics. 410 0$aSpringer Proceedings in Mathematics & Statistics,$x2194-1017 ;$v152 606 $aMathematical logic 606 $aMathematics 606 $aLogic 606 $aMetaphysics 606 $aMathematical Logic and Foundations 606 $aApplications of Mathematics 606 $aLogic 606 $aMetaphysics 615 0$aMathematical logic. 615 0$aMathematics. 615 0$aLogic. 615 0$aMetaphysics. 615 14$aMathematical Logic and Foundations. 615 24$aApplications of Mathematics. 615 24$aLogic. 615 24$aMetaphysics. 676 $a510 702 $aBeziau$b Jean-Yves$4edt$4http://id.loc.gov/vocabulary/relators/edt 702 $aChakraborty$b Mihir$4edt$4http://id.loc.gov/vocabulary/relators/edt 702 $aDutta$b Soma$4edt$4http://id.loc.gov/vocabulary/relators/edt 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910300250903321 996 $aNew directions in paraconsistent logic$91522904 997 $aUNINA