LEADER 03925nam 22007095 450 001 9910300249003321 005 20200630210021.0 010 $a4-431-55960-4 024 7 $a10.1007/978-4-431-55960-3 035 $a(CKB)3710000000541913 035 $a(EBL)4189506 035 $a(SSID)ssj0001597523 035 $a(PQKBManifestationID)16298073 035 $a(PQKBTitleCode)TC0001597523 035 $a(PQKBWorkID)14886277 035 $a(PQKB)10220479 035 $a(DE-He213)978-4-431-55960-3 035 $a(MiAaPQ)EBC4189506 035 $a(PPN)190884053 035 $a(EXLCZ)993710000000541913 100 $a20151210d2015 u| 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aQuantum States of Light /$fby Akira Furusawa 205 $a1st ed. 2015. 210 1$aTokyo :$cSpringer Japan :$cImprint: Springer,$d2015. 215 $a1 online resource (110 p.) 225 1 $aSpringerBriefs in Mathematical Physics,$x2197-1757 ;$v10 300 $aDescription based upon print version of record. 311 $a4-431-55958-2 320 $aIncludes bibliographical references and index. 327 $a1. Quantum states of light -- 1-1 Quantum optics -- 1-2 Coherent states -- 1-3 Balanced homodyne measurements -- 1-4 Single-photon state -- 1-5 Fock states -- 1-6 Super position of a vacuum and a single photon -- 1-7 Coherent states and Schrodinger's cat states -- 1-8 Wigner function -- 1-9 Super position of a vacuum and a two-photon state -- 1-10 Squeezed states -- 1-11 Squeezing operation -- 1-12 Quantum entanglement -- 2. Generation of quantum states of light -- 2-1 Generation of coherent states -- 2-2 Generation of squeezed states -- 2-3 Generation of a single-photon state -- 2-4 Generation of Schrodinger's cat states -- 2-5 Generation of superposition of Fock states -- 2-6 Generation of quantum entanglement -- 3. Quantum operations for quantum states of light -- 3-1 Various quantum operations -- 3-2 Quantum teleportation -- 3-3 Quantum gate teleportation. 330 $aThis book explains what quantum states of light look like. Of special interest, a single photon state is explained by using a wave picture, showing that it corresponds to the complementarity of a quantum. Also explained is how light waves are created by photons, again corresponding to the complementarity of a quantum. The author shows how an optical wave is created by superposition of a "vacuum" and a single photon as a typical example. Moreover, squeezed states of light are explained as "longitudinal" waves of light and Schrödinger's cat states as macroscopic superposition states. 410 0$aSpringerBriefs in Mathematical Physics,$x2197-1757 ;$v10 606 $aMathematical physics 606 $aQuantum optics 606 $aQuantum computers 606 $aSpintronics 606 $aMathematical Physics$3https://scigraph.springernature.com/ontologies/product-market-codes/M35000 606 $aQuantum Optics$3https://scigraph.springernature.com/ontologies/product-market-codes/P24050 606 $aQuantum Information Technology, Spintronics$3https://scigraph.springernature.com/ontologies/product-market-codes/P31070 606 $aQuantum Computing$3https://scigraph.springernature.com/ontologies/product-market-codes/M14070 615 0$aMathematical physics. 615 0$aQuantum optics. 615 0$aQuantum computers. 615 0$aSpintronics. 615 14$aMathematical Physics. 615 24$aQuantum Optics. 615 24$aQuantum Information Technology, Spintronics. 615 24$aQuantum Computing. 676 $a535 700 $aFurusawa$b Akira$4aut$4http://id.loc.gov/vocabulary/relators/aut$0755717 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910300249003321 996 $aQuantum states of light$91522885 997 $aUNINA