LEADER 01046nlm0-22003611i-450- 001 990009679210403321 005 20130208120830.0 010 $a978-1-4377-0867-7 035 $a000967921 035 $aFED01000967921 035 $a(Aleph)000967921FED01 035 $a000967921 100 $a20130208d2012----km-y0itaa50------ba 101 0 $aeng 102 $aUS 135 $adrnn-008mamaa 200 1 $aEquine surgery$bRisorsa elettronica$f[edited by] Jörg A. Auer, John A. Stick 205 $a4th ed 210 $aSt. Louis, Mo$cSaunders Elsevier$dc2012 230 $aDocumento elettronico 336 $aTesto 337 $aFormato html, pdf 610 0 $aCavalli$aChirurgia 676 $a636.1089 7 702 1$aAuer,$bJörg A. 702 1$aStick,$bJohn A. 801 0$aIT$bUNINA$gREICAT$2UNIMARC 856 4 $zFull text per gli utenti Federico II$uhttp://www.sciencedirect.com/science/book/9781437708677 901 $aEB 912 $a990009679210403321 959 $aFMVBC 996 $aEquine surgery$9839770 997 $aUNINA LEADER 02156oam 2200553 450 001 9910711824903321 005 20190212155210.0 035 $a(CKB)5470000002487835 035 $a(OCoLC)174537543 035 $a(EXLCZ)995470000002487835 100 $a20071017d2007 ua 0 101 0 $aeng 135 $aurcn||||m|||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aHydrogeologic characteristics of the St. Croix River basin, Minnesota and Wisconsin $eimplications for the susceptibility of ground water to potential contamination /$fby Paul F. Juckem ; prepared in cooperation with the National Park Service 210 1$aReston, Virginia :$cU.S. Department of the Interior, U.S. Geological Survey,$d2007. 215 $a1 online resource (v, 25 pages) $ccolor maps 225 1 $aScientific investigations report ;$v2007-5112 320 $aIncludes bibliographical references (pages 24-25). 517 $aHydrogeologic characteristics of the St. Croix River basin, Minnesota and Wisconsin 606 $aWater$xPollution potential$zSaint Croix River Watershed (Wis. and Minn.) 606 $aHydrogeology$zSaint Croix River Watershed (Wis. and Minn.) 606 $aGroundwater flow$zSaint Croix River Watershed (Wis. and Minn.) 606 $aGroundwater flow$2fast 606 $aHydrogeology$2fast 606 $aWater$xPollution potential$2fast 607 $aUnited States$zSaint Croix River Watershed$2fast 615 0$aWater$xPollution potential 615 0$aHydrogeology 615 0$aGroundwater flow 615 7$aGroundwater flow. 615 7$aHydrogeology. 615 7$aWater$xPollution potential. 700 $aJuckem$b Paul F.$01389446 712 02$aGeological Survey (U.S.), 712 02$aUnited States.$bNational Park Service. 801 0$bGIS 801 1$bGIS 801 2$bOCLCQ 801 2$bOCLCF 801 2$bOCLCO 801 2$bOCLCQ 801 2$bGPO 906 $aBOOK 912 $a9910711824903321 996 $aHydrogeologic characteristics of the St. Croix River basin, Minnesota and Wisconsin$93485097 997 $aUNINA LEADER 05547nam 22008655 450 001 9910300248403321 005 20200704223636.0 010 $a3-319-18863-1 024 7 $a10.1007/978-3-319-18863-8 035 $a(CKB)3710000000474321 035 $a(EBL)4088792 035 $a(SSID)ssj0001574632 035 $a(PQKBManifestationID)16232652 035 $a(PQKBTitleCode)TC0001574632 035 $a(PQKBWorkID)14844803 035 $a(PQKB)11533061 035 $a(DE-He213)978-3-319-18863-8 035 $a(MiAaPQ)EBC4088792 035 $a(PPN)190533072 035 $a(EXLCZ)993710000000474321 100 $a20150912d2015 u| 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aHarmonic and Applied Analysis $eFrom Groups to Signals /$fedited by Stephan Dahlke, Filippo De Mari, Philipp Grohs, Demetrio Labate 205 $a1st ed. 2015. 210 1$aCham :$cSpringer International Publishing :$cImprint: Birkhäuser,$d2015. 215 $a1 online resource (268 p.) 225 1 $aApplied and Numerical Harmonic Analysis,$x2296-5009 300 $aDescription based upon print version of record. 311 $a3-319-18862-3 320 $aIncludes bibliographical references at the end of each chapters and index. 327 $aFrom Group Representations to Signal Analysis -- The Use of Representations in Applied Harmonic Analysis -- Shearlet Coorbit Theory -- Efficient Analysis and Detection of Edges through Directional Multiscale Representations -- Optimally Sparse Data Representations. 330 $aThis contributed volume explores the connection between the theoretical aspects of harmonic analysis and the construction of advanced multiscale representations that have emerged in signal and image processing. It highlights some of the most promising mathematical developments in harmonic analysis in the last decade brought about by the interplay among different areas of abstract and applied mathematics. This intertwining of ideas is considered starting from the theory of unitary group representations and leading to the construction of very efficient schemes for the analysis of multidimensional data. After an introductory chapter surveying the scientific significance of classical and more advanced multiscale methods, chapters cover such topics as An overview of Lie theory focused on common applications in signal analysis, including the wavelet representation of the affine group, the Schrödinger representation of the Heisenberg group, and the metaplectic representation of the symplectic group An introduction to coorbit theory and how it can be combined with the shearlet transform to establish shearlet coorbit spaces Microlocal properties of the shearlet transform and its ability to provide a precise geometric characterization of edges and interface boundaries in images and other multidimensional data Mathematical techniques to construct optimal data representations for a number of signal types, with a focus on the optimal approximation of functions governed by anisotropic singularities. A unified notation is used across all of the chapters to ensure consistency of the mathematical material presented. Harmonic and Applied Analysis: From Groups to Signals is aimed at graduate students and researchers in the areas of harmonic analysis and applied mathematics, as well as at other applied scientists interested in representations of multidimensional data. It can also be used as a textbook for graduate courses in applied harmonic analysis. 410 0$aApplied and Numerical Harmonic Analysis,$x2296-5009 606 $aHarmonic analysis 606 $aFourier analysis 606 $aGroup theory 606 $aTopological groups 606 $aLie groups 606 $aSignal processing 606 $aImage processing 606 $aSpeech processing systems 606 $aAbstract Harmonic Analysis$3https://scigraph.springernature.com/ontologies/product-market-codes/M12015 606 $aFourier Analysis$3https://scigraph.springernature.com/ontologies/product-market-codes/M12058 606 $aGroup Theory and Generalizations$3https://scigraph.springernature.com/ontologies/product-market-codes/M11078 606 $aTopological Groups, Lie Groups$3https://scigraph.springernature.com/ontologies/product-market-codes/M11132 606 $aSignal, Image and Speech Processing$3https://scigraph.springernature.com/ontologies/product-market-codes/T24051 615 0$aHarmonic analysis. 615 0$aFourier analysis. 615 0$aGroup theory. 615 0$aTopological groups. 615 0$aLie groups. 615 0$aSignal processing. 615 0$aImage processing. 615 0$aSpeech processing systems. 615 14$aAbstract Harmonic Analysis. 615 24$aFourier Analysis. 615 24$aGroup Theory and Generalizations. 615 24$aTopological Groups, Lie Groups. 615 24$aSignal, Image and Speech Processing. 676 $a515.2433 702 $aDahlke$b Stephan$4edt$4http://id.loc.gov/vocabulary/relators/edt 702 $aDe Mari$b Filippo$4edt$4http://id.loc.gov/vocabulary/relators/edt 702 $aGrohs$b Philipp$4edt$4http://id.loc.gov/vocabulary/relators/edt 702 $aLabate$b Demetrio$4edt$4http://id.loc.gov/vocabulary/relators/edt 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910300248403321 996 $aHarmonic and Applied Analysis$92564285 997 $aUNINA