LEADER 03364nam 22006255 450 001 9910300248303321 005 20200705122146.0 010 $a3-319-27200-4 024 7 $a10.1007/978-3-319-27200-9 035 $a(CKB)3710000000541907 035 $a(EBL)4305866 035 $a(SSID)ssj0001597445 035 $a(PQKBManifestationID)16296626 035 $a(PQKBTitleCode)TC0001597445 035 $a(PQKBWorkID)14886160 035 $a(PQKB)10952674 035 $a(DE-He213)978-3-319-27200-9 035 $a(MiAaPQ)EBC4305866 035 $a(PPN)190885556 035 $a(EXLCZ)993710000000541907 100 $a20151229d2015 u| 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$a Stability Analysis of Nonlinear Systems /$fby Vangipuram Lakshmikantham, Srinivasa Leela, Anatoly A. Martynyuk 205 $a2nd ed. 2015. 210 1$aCham :$cSpringer International Publishing :$cImprint: Birkhäuser,$d2015. 215 $a1 online resource (339 p.) 225 1 $aSystems & Control: Foundations & Applications,$x2324-9749 300 $aDescription based upon print version of record. 311 $a3-319-27199-7 320 $aIncludes bibliographical references and index. 327 $aPreface to the Second Edition -- Preface -- 1 Inequalities -- 2 Variation of parameters and monotone technique -- 3 Stability of Motion in Terms of Two Measures -- 4 Stability of perturbed motion -- 5 Models of Real World Phenomena. . 330 $aThe book investigates stability theory in terms of two different measure, exhibiting the advantage of employing families of Lyapunov functions and treats the theory of a variety of inequalities, clearly bringing out the underlying theme. It also demonstrates manifestations of the general Lyapunov method, showing how this technique can be adapted to various apparently diverse nonlinear problems. Furthermore it discusses the application of theoretical results to several different models chosen from real world phenomena, furnishing data that is particularly relevant for practitioners. Stability Analysis of Nonlinear Systems is an invaluable single-sourse reference for industrial and applied mathematicians, statisticians, engineers, researchers in the applied sciences, and graduate students studying differential equations. 410 0$aSystems & Control: Foundations & Applications,$x2324-9749 606 $aDynamics 606 $aErgodic theory 606 $aSystem theory 606 $aDynamical Systems and Ergodic Theory$3https://scigraph.springernature.com/ontologies/product-market-codes/M1204X 606 $aSystems Theory, Control$3https://scigraph.springernature.com/ontologies/product-market-codes/M13070 615 0$aDynamics. 615 0$aErgodic theory. 615 0$aSystem theory. 615 14$aDynamical Systems and Ergodic Theory. 615 24$aSystems Theory, Control. 676 $a510 700 $aLakshmikantham$b Vangipuram$4aut$4http://id.loc.gov/vocabulary/relators/aut$0269023 702 $aLeela$b Srinivasa$4aut$4http://id.loc.gov/vocabulary/relators/aut 702 $aMartynyuk$b Anatoly A$4aut$4http://id.loc.gov/vocabulary/relators/aut 906 $aBOOK 912 $a9910300248303321 996 $aStability analysis of nonlinear systems$91490733 997 $aUNINA