LEADER 01731nam 2200457 450 001 9910522566403321 005 20220925172951.0 010 $a9783030903435$b(electronic bk.) 010 $z9783030903428 035 $a(MiAaPQ)EBC6882519 035 $a(Au-PeEL)EBL6882519 035 $a(CKB)21069304800041 035 $a(PPN)260827061 035 $a(EXLCZ)9921069304800041 100 $a20220925d2022 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aAutomating data-driven modelling of dynamical systems $ean evolutionary computation approach /$fDhruv Khandelwal 210 1$aCham, Switzerland :$cSpringer,$d[2022] 210 4$dİ2022 215 $a1 online resource (250 pages) $cillustrations (some color) 225 1 $aSpringer Theses. 300 $a"Doctoral thesis accepted by Eindhoven University of Technology, Eindhoven, The Netherlands." 311 08$aPrint version: Khandelwal, Dhruv Automating Data-Driven Modelling of Dynamical Systems Cham : Springer International Publishing AG,c2022 9783030903428 327 $aIntroduction The State-of-the-art Preliminaries - Evolutionary Algorithms Tree Adjoining Grammar Performance measures 410 0$aSpringer Theses. 606 $aDynamics$xMathematical models 606 $aAutomatic control 615 0$aDynamics$xMathematical models. 615 0$aAutomatic control. 676 $a620.10540285 700 $aKhandelwal$b Dhruv$01081936 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 912 $a9910522566403321 996 $aAutomating Data-Driven Modelling of Dynamical Systems$92596875 997 $aUNINA LEADER 02281nam 22005055 450 001 9910300179003321 005 20200704123045.0 010 $a3-319-20741-5 024 7 $a10.1007/978-3-319-20741-4 035 $a(CKB)3710000000492479 035 $a(EBL)4178340 035 $a(SSID)ssj0001585162 035 $a(PQKBManifestationID)16265197 035 $a(PQKBTitleCode)TC0001585162 035 $a(PQKBWorkID)14864013 035 $a(PQKB)11195121 035 $a(DE-He213)978-3-319-20741-4 035 $a(MiAaPQ)EBC4178340 035 $a(PPN)19051826X 035 $a(EXLCZ)993710000000492479 100 $a20151015d2015 u| 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aGuide to Targeted Therapies: Treatment Resistance in Lung Cancer /$fby Federico Cappuzzo 205 $a1st ed. 2015. 210 1$aCham :$cSpringer International Publishing :$cImprint: Adis,$d2015. 215 $a1 online resource (71 p.) 300 $aDescription based upon print version of record. 311 $a3-319-20740-7 320 $aIncludes bibliographical references. 327 $aIntroduction -- Therapy options for advanced NSCLC -- Resistance to EGFR TKIs -- Overcoming EGFR-TKI resistance -- Resistance to crizotinib and therapeutic options -- Resistance to angiogenic drugs and therapeutics options.- Conclusions. 330 $aThis text is a concise and up-to-date review, which discusses the background, development and mechanisms of resistance, testing methods and technology, current and emerging therapies and resources that clinicians can provide to their patients. Busy healthcare professionals who want a quick review of treatment resistance in lung cancer as well as a summary of current therapies will benefit from this succinct guide. 606 $aOncology 606 $aOncology$3https://scigraph.springernature.com/ontologies/product-market-codes/H33160 615 0$aOncology. 615 14$aOncology. 676 $a616.994 700 $aCappuzzo$b Federico$4aut$4http://id.loc.gov/vocabulary/relators/aut$0755671 906 $aBOOK 912 $a9910300179003321 996 $aGuide to Targeted Therapies: Treatment Resistance in Lung Cancer$92528722 997 $aUNINA