LEADER 03491nam 22006255 450 001 9910300156603321 005 20250402132819.0 010 $a3-642-37887-0 024 7 $a10.1007/978-3-642-37887-4 035 $a(CKB)3710000000078630 035 $a(Springer)9783642378874 035 $a(MH)013879546-0 035 $a(SSID)ssj0001067178 035 $a(PQKBManifestationID)11630065 035 $a(PQKBTitleCode)TC0001067178 035 $a(PQKBWorkID)11091932 035 $a(PQKB)11093188 035 $a(DE-He213)978-3-642-37887-4 035 $a(MiAaPQ)EBC3095790 035 $a(PPN)176112219 035 $a(EXLCZ)993710000000078630 100 $a20131112d2014 u| 0 101 0 $aeng 135 $aurnn#008mamaa 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aApplied Statistical Inference $eLikelihood and Bayes /$fby Leonhard Held, Daniel Sabanés Bové 205 $a1st ed. 2014. 210 1$aBerlin, Heidelberg :$cSpringer Berlin Heidelberg :$cImprint: Springer,$d2014. 215 $a1 online resource (XIII, 376 p. 71 illus.)$conline resource 300 $aBibliographic Level Mode of Issuance: Monograph 311 08$a3-642-37886-2 320 $aIncludes bibliographical references and index. 330 $aThis book covers modern statistical inference based on likelihood with applications in medicine, epidemiology and biology. Two introductory chapters discuss the importance of statistical models in applied quantitative research and the central role of the likelihood function. The rest of the book is divided into three parts. The first describes likelihood-based inference from a frequentist viewpoint.  Properties of the maximum likelihood estimate, the score function, the likelihood ratio and the Wald statistic are discussed in detail. In the second part, likelihood is combined with prior information to perform Bayesian inference. Topics include Bayesian updating, conjugate and reference priors, Bayesian point and interval estimates, Bayesian asymptotics and empirical Bayes methods. Modern numerical techniques for Bayesian inference are described in a separate chapter. Finally two more advanced topics, model choice and prediction, are discussed both from a frequentist and a Bayesian perspective.   A comprehensive appendix covers the necessary prerequisites in probability theory, matrix algebra, mathematical calculus, and numerical analysis. 606 $aStatistics 606 $aBiometry 606 $aMathematical statistics$xData processing 606 $aStatistical Theory and Methods 606 $aBiostatistics 606 $aStatistics and Computing 615 0$aStatistics. 615 0$aBiometry. 615 0$aMathematical statistics$xData processing. 615 14$aStatistical Theory and Methods. 615 24$aBiostatistics. 615 24$aStatistics and Computing. 676 $a519.5 700 $aHeld$b Leonhard$4aut$4http://id.loc.gov/vocabulary/relators/aut$0721217 702 $aSabane?s Bove?$b Daniel$4aut$4http://id.loc.gov/vocabulary/relators/aut 906 $aBOOK 912 $a9910300156603321 996 $aApplied Statistical Inference$92536504 997 $aUNINA 999 $aThis Record contains information from the Harvard Library Bibliographic Dataset, which is provided by the Harvard Library under its Bibliographic Dataset Use Terms and includes data made available by, among others the Library of Congress