LEADER 04838nam 22006975 450 001 9910300155603321 005 20200706171136.0 010 $a3-319-03804-4 024 7 $a10.1007/978-3-319-03804-9 035 $a(CKB)3710000000085776 035 $a(SSID)ssj0001178762 035 $a(PQKBManifestationID)11707381 035 $a(PQKBTitleCode)TC0001178762 035 $a(PQKBWorkID)11169523 035 $a(PQKB)10092790 035 $a(MiAaPQ)EBC1698130 035 $a(DE-He213)978-3-319-03804-9 035 $a(PPN)176108491 035 $a(EXLCZ)993710000000085776 100 $a20140131d2014 u| 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt 182 $cc 183 $acr 200 10$aMathematical Models and Methods for Plasma Physics, Volume 1 $eFluid Models /$fby Rémi Sentis 205 $a1st ed. 2014. 210 1$aCham :$cSpringer International Publishing :$cImprint: Birkhäuser,$d2014. 215 $a1 online resource (246 pages) $cillustrations 225 1 $aModeling and Simulation in Science, Engineering and Technology,$x2164-3679 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a3-319-03803-6 320 $aIncludes bibliographical references and index. 327 $aChapter 1. Introduction. Some Plasma characteristic quantities -- Chapter 2. Quasi-neutrality. Magneto-hydrodynamics -- Chapter 3. Laser propagation. Coupling with ion acoustic waves -- Chapter 4. Langmuir waves and Zakharov equations -- Chapter 5. Coupling electron waves and laser waves -- Chapter 6. Models with several species -- Appendix -- Bibliography -- Index. 330 $aThis monograph is dedicated to the derivation and analysis of fluid models occurring in plasma physics. It focuses on models involving quasi-neutrality approximation, problems related to laser propagation in a plasma, and coupling plasma waves and electromagnetic waves. Applied mathematicians will find a stimulating introduction to the world of plasma physics and a few open problems that are mathematically rich. Physicists who may be overwhelmed by the abundance of models and uncertain of their underlying assumptions will find basic mathematical properties of the related systems of partial differential equations. A planned second volume will be devoted to kinetic models.                                                                                                                                                        First and foremost, this book mathematically derives certain common fluid models from more general models. Although some of these derivations may be well known to physicists, it is important to highlight the assumptions underlying the derivations and to realize that some seemingly simple approximations turn out to be more complicated than they look. Such approximations are justified using asymptotic analysis wherever possible. Furthermore, efficient simulations of multi-dimensional models require precise statements of the related systems of partial differential equations along with appropriate boundary conditions. Some mathematical properties of these systems are presented which offer hints to those using numerical methods, although numerics is not the primary focus of the book. 410 0$aModeling and Simulation in Science, Engineering and Technology,$x2164-3679 606 $aMathematical physics 606 $aPlasma (Ionized gases) 606 $aPhysics 606 $aDifferential equations, Partial 606 $aMathematical Applications in the Physical Sciences$3https://scigraph.springernature.com/ontologies/product-market-codes/M13120 606 $aPlasma Physics$3https://scigraph.springernature.com/ontologies/product-market-codes/P24040 606 $aMathematical Methods in Physics$3https://scigraph.springernature.com/ontologies/product-market-codes/P19013 606 $aPartial Differential Equations$3https://scigraph.springernature.com/ontologies/product-market-codes/M12155 615 0$aMathematical physics. 615 0$aPlasma (Ionized gases) 615 0$aPhysics. 615 0$aDifferential equations, Partial. 615 14$aMathematical Applications in the Physical Sciences. 615 24$aPlasma Physics. 615 24$aMathematical Methods in Physics. 615 24$aPartial Differential Equations. 676 $a530.440724 700 $aSentis$b Rémi$4aut$4http://id.loc.gov/vocabulary/relators/aut$0421971 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910300155603321 996 $aMathematical Models and Methods for Plasma Physics, Volume 1$92529846 997 $aUNINA LEADER 00732nam0-2200277 --450 001 9911039522003321 005 20251117101859.0 020 $aIT$b7711797 100 $a20251117d1977----kmuy0itay5050 ba 101 0 $aita 102 $aIT 105 $aa 001yy 200 1 $aAndreotti$fRaffaele Monti 210 $aRoma$cEditalia$d1977 215 $a26 p., 77 c. di tav.$d24 cm 225 1 $aAccademici di San Luca$v12 610 0 $aAndreotti, Libero 676 $a730.945 700 1$aMonti,$bRaffaele$f<1932-2008>$037001 801 0$aIT$bUNINA$gREICAT$2UNIMARC 901 $aBK 912 $a9911039522003321 952 $aDE FUSCO 1724$bRDF 1783$fDARST 959 $aDARST 996 $aAndreotti$94456443 997 $aUNINA LEADER 02864nam 2200685 a 450 001 9910962402903321 005 20250715212350.0 010 $a9781614446040 010 $a1614446040 035 $a(CKB)2560000000081408 035 $a(EBL)3330427 035 $a(SSID)ssj0000577670 035 $a(PQKBManifestationID)11362429 035 $a(PQKBTitleCode)TC0000577670 035 $a(PQKBWorkID)10562409 035 $a(PQKB)11489574 035 $a(Au-PeEL)EBL3330427 035 $a(CaPaEBR)ebr10733070 035 $a(OCoLC)929120365 035 $a(RPAM)15827581 035 $a(MiAaPQ)EBC3330427 035 $a(EXLCZ)992560000000081408 100 $a20090721d2009 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aLie groups $ea problem-oriented introduction via matrix groups /$fHarriet Pollatsek 205 $a1st ed. 210 $a[Washington, D.C.] $cMathematical Association of America$dc2009 215 $a1 online resource (190 p.) 225 1 $aAMS/MAA Textbooks,$x2577-1213 ;$vv. 13 225 0$aMAA textbooks 300 $aDescription based upon print version of record. 311 08$a9781470479145 311 08$a1470479141 311 08$a9780883857595 311 08$a0883857596 320 $aIncludes bibliographical references (p. 169-170) and indexes. 327 $a1. Symmetries of vector spaces -- 2. Complex numbers, quaternions and geometry -- 3. Linearization -- 4. One-parameter subgroups and the exponential map -- 5. Lie algebras -- 6. Matrix groups over other fields. 330 $aThis textbook is a complete introduction to Lie groups for undergraduate students. The only prerequisites are multi-variable calculus and linear algebra. The emphasis is placed on the algebraic ideas, with just enough analysis to define the tangent space and the differential and to make sense of the exponential map. This textbook works on the principle that students learn best when they are actively engaged. To this end nearly 200 problems are included in the text, ranging from the routine to the challenging level. Every chapter has a section called "Putting the pieces together" in which all definitions and results are collected for reference and further reading is suggested. 410 0$aMAA Textbooks 606 $aLie groups 606 $aLie groups$vProblems, exercises, etc 606 $aMatrix groups 615 0$aLie groups. 615 0$aLie groups 615 0$aMatrix groups. 676 $a512.482 686 $aSK 340$2rvk 700 $aPollatsek$b Harriet Suzanne Katcher$01798473 712 02$aMathematical Association of America. 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910962402903321 996 $aLie groups$94341263 997 $aUNINA