LEADER 04004nam 22007455 450 001 9910300151903321 005 20200701050112.0 010 $a1-4614-9638-1 024 7 $a10.1007/978-1-4614-9638-0 035 $a(CKB)3710000000085745 035 $a(Springer)9781461496380 035 $a(MH)013923488-8 035 $a(SSID)ssj0001187490 035 $a(PQKBManifestationID)11662843 035 $a(PQKBTitleCode)TC0001187490 035 $a(PQKBWorkID)11256473 035 $a(PQKB)10042427 035 $a(DE-He213)978-1-4614-9638-0 035 $a(MiAaPQ)EBC6312456 035 $a(MiAaPQ)EBC1697839 035 $a(Au-PeEL)EBL1697839 035 $a(CaPaEBR)ebr10969140 035 $a(OCoLC)871283183 035 $a(PPN)176101675 035 $a(EXLCZ)993710000000085745 100 $a20140124d2014 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aReal Analysis for the Undergraduate $eWith an Invitation to Functional Analysis /$fby Matthew A. Pons 205 $a1st ed. 2014. 210 1$aNew York, NY :$cSpringer New York :$cImprint: Springer,$d2014. 215 $a1 online resource (XVIII, 409 p. 43 illus.)$conline resource 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a1-4614-9637-3 320 $aIncludes bibliographical references and index. 327 $aThe Real Numbers -- Sequences in R -- Numerical Series -- Continuity -- The Derivative -- Sequence and Series of Functions -- The Riemann Integral -- Lebesgue Measure on R -- Lebesgue Integration . 330 $aThis undergraduate textbook introduces students to the basics of real analysis, provides an introduction to more advanced topics including measure theory and Lebesgue integration, and offers an invitation to functional analysis. While these advanced topics are not typically encountered until graduate study, the text is designed for the beginner. The author?s engaging style makes advanced topics approachable without sacrificing rigor. The text also consistently encourages the reader to pick up a pencil and take an active part in the learning process. Key features include: - examples to reinforce theory; - thorough explanations preceding definitions, theorems and formal proofs; - illustrations to support intuition; - over 450 exercises designed to develop connections between the concrete and abstract. This text takes students on a journey through the basics of real analysis and provides those who wish to delve deeper the opportunity to experience mathematical ideas that are beyond the standard undergraduate curriculum. 606 $aMathematical analysis 606 $aAnalysis (Mathematics) 606 $aFunctions of real variables 606 $aFunctional analysis 606 $aAnalysis$3https://scigraph.springernature.com/ontologies/product-market-codes/M12007 606 $aReal Functions$3https://scigraph.springernature.com/ontologies/product-market-codes/M12171 606 $aFunctional Analysis$3https://scigraph.springernature.com/ontologies/product-market-codes/M12066 615 0$aMathematical analysis. 615 0$aAnalysis (Mathematics). 615 0$aFunctions of real variables. 615 0$aFunctional analysis. 615 14$aAnalysis. 615 24$aReal Functions. 615 24$aFunctional Analysis. 676 $a515 700 $aPons$b Matthew A$4aut$4http://id.loc.gov/vocabulary/relators/aut$0721708 702 $aAllen$b Robert F 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910300151903321 996 $aReal analysis for the undergraduate$91410712 997 $aUNINA 999 $aThis Record contains information from the Harvard Library Bibliographic Dataset, which is provided by the Harvard Library under its Bibliographic Dataset Use Terms and includes data made available by, among others the Library of Congress