LEADER 04132nam 22007575 450 001 9910300148303321 005 20200702165912.0 010 $a3-319-06373-1 024 7 $a10.1007/978-3-319-06373-7 035 $a(CKB)3710000000212188 035 $a(DE-He213)978-3-319-06373-7 035 $a(SSID)ssj0001296926 035 $a(PQKBManifestationID)11802627 035 $a(PQKBTitleCode)TC0001296926 035 $a(PQKBWorkID)11362234 035 $a(PQKB)11167360 035 $a(MiAaPQ)EBC6305139 035 $a(MiAaPQ)EBC5587212 035 $a(Au-PeEL)EBL5587212 035 $a(OCoLC)1066195603 035 $a(PPN)179925407 035 $a(EXLCZ)993710000000212188 100 $a20140722d2014 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aGeometry of Manifolds with Non-negative Sectional Curvature $eEditors: Rafael Herrera, Luis Hernández-Lamoneda /$fby Owen Dearricott, Fernando Galaz-García, Lee Kennard, Catherine Searle, Gregor Weingart, Wolfgang Ziller 205 $a1st ed. 2014. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2014. 215 $a1 online resource (VII, 196 p. 5 illus.) 225 1 $aLecture Notes in Mathematics,$x0075-8434 ;$v2110 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a3-319-06372-3 327 $aRiemannian manifolds with positive sectional curvature -- An introduction to isometric group actions -- A note on maximal symmetry rank, quasipositive curvature and low dimensional manifolds -- Lectures on n-Sasakian manifolds -- On the Hopf conjecture with symmetry -- An Introduction to Exterior Differential Systems. 330 $aProviding an up-to-date overview of the geometry of manifolds with non-negative sectional curvature, this volume gives a detailed account of the most recent research in the area. The lectures cover a wide range of topics such as general isometric group actions, circle actions on positively curved four manifolds, cohomogeneity one actions on Alexandrov spaces, isometric torus actions on Riemannian manifolds of maximal symmetry rank, n-Sasakian manifolds, isoparametric hypersurfaces in spheres, contact CR and CR submanifolds, Riemannian submersions and the Hopf conjecture with symmetry. Also included is an introduction to the theory of exterior differential systems. 410 0$aLecture Notes in Mathematics,$x0075-8434 ;$v2110 606 $aDifferential geometry 606 $aManifolds (Mathematics) 606 $aComplex manifolds 606 $aGlobal analysis (Mathematics) 606 $aDifferential Geometry$3https://scigraph.springernature.com/ontologies/product-market-codes/M21022 606 $aManifolds and Cell Complexes (incl. Diff.Topology)$3https://scigraph.springernature.com/ontologies/product-market-codes/M28027 606 $aGlobal Analysis and Analysis on Manifolds$3https://scigraph.springernature.com/ontologies/product-market-codes/M12082 615 0$aDifferential geometry. 615 0$aManifolds (Mathematics). 615 0$aComplex manifolds. 615 0$aGlobal analysis (Mathematics). 615 14$aDifferential Geometry. 615 24$aManifolds and Cell Complexes (incl. Diff.Topology). 615 24$aGlobal Analysis and Analysis on Manifolds. 676 $a516.07 700 $aDearricott$b Owen$4aut$4http://id.loc.gov/vocabulary/relators/aut$0739661 702 $aGalaz-García$b Fernando$4aut$4http://id.loc.gov/vocabulary/relators/aut 702 $aKennard$b Lee$4aut$4http://id.loc.gov/vocabulary/relators/aut 702 $aSearle$b Catherine$4aut$4http://id.loc.gov/vocabulary/relators/aut 702 $aWeingart$b Gregor$4aut$4http://id.loc.gov/vocabulary/relators/aut 702 $aZiller$b Wolfgang$4aut$4http://id.loc.gov/vocabulary/relators/aut 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910300148303321 996 $aGeometry of Manifolds with Non-negative Sectional Curvature$92422227 997 $aUNINA