LEADER 03309nam 22007335 450 001 9910300148203321 005 20200630234137.0 010 $a3-319-06477-0 024 7 $a10.1007/978-3-319-06477-2 035 $a(CKB)3710000000212189 035 $a(DE-He213)978-3-319-06477-2 035 $a(SSID)ssj0001296688 035 $a(PQKBManifestationID)11768410 035 $a(PQKBTitleCode)TC0001296688 035 $a(PQKBWorkID)11353477 035 $a(PQKB)10381034 035 $a(MiAaPQ)EBC5586493 035 $a(Au-PeEL)EBL5586493 035 $a(OCoLC)884213329 035 $a(PPN)179925415 035 $a(EXLCZ)993710000000212189 100 $a20140716d2014 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aFiniteness Properties of Arithmetic Groups Acting on Twin Buildings /$fby Stefan Witzel 205 $a1st ed. 2014. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2014. 215 $a1 online resource (XVI, 113 p. 11 illus.) 225 1 $aLecture Notes in Mathematics,$x0075-8434 ;$v2109 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a3-319-06476-2 327 $aBasic Definitions and Properties -- Finiteness Properties of G(Fq[t]) -- Finiteness Properties of G(Fq[t; t-1]) -- Affine Kac-Moody Groups -- Adding Places. 330 $aProviding an accessible approach to a special case of the Rank Theorem, the present text considers the exact finiteness properties of S-arithmetic subgroups of split reductive groups in positive characteristic when S contains only two places. While the proof of the general Rank Theorem uses an involved reduction theory due to Harder, by imposing the restrictions that the group is split and that S has only two places, one can instead make use of the theory of twin buildings. 410 0$aLecture Notes in Mathematics,$x0075-8434 ;$v2109 606 $aGroup theory 606 $aGeometry 606 $aManifolds (Mathematics) 606 $aComplex manifolds 606 $aAlgebraic topology 606 $aGroup Theory and Generalizations$3https://scigraph.springernature.com/ontologies/product-market-codes/M11078 606 $aGeometry$3https://scigraph.springernature.com/ontologies/product-market-codes/M21006 606 $aManifolds and Cell Complexes (incl. Diff.Topology)$3https://scigraph.springernature.com/ontologies/product-market-codes/M28027 606 $aAlgebraic Topology$3https://scigraph.springernature.com/ontologies/product-market-codes/M28019 615 0$aGroup theory. 615 0$aGeometry. 615 0$aManifolds (Mathematics) 615 0$aComplex manifolds. 615 0$aAlgebraic topology. 615 14$aGroup Theory and Generalizations. 615 24$aGeometry. 615 24$aManifolds and Cell Complexes (incl. Diff.Topology). 615 24$aAlgebraic Topology. 676 $a512.2 700 $aWitzel$b Stefan$4aut$4http://id.loc.gov/vocabulary/relators/aut$0718153 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910300148203321 996 $aFiniteness properties of arithmetic groups acting on twin buildings$91392283 997 $aUNINA