LEADER 03888nam 22006375 450 001 9910300148003321 005 20250416053945.0 010 $a1-4614-8775-7 024 7 $a10.1007/978-1-4614-8775-3 035 $a(CKB)3710000000078552 035 $a(Springer)9781461487753 035 $a(MH)013879498-7 035 $a(SSID)ssj0001067977 035 $a(PQKBManifestationID)11676685 035 $a(PQKBTitleCode)TC0001067977 035 $a(PQKBWorkID)11092013 035 $a(PQKB)11036596 035 $a(DE-He213)978-1-4614-8775-3 035 $a(MiAaPQ)EBC3095750 035 $a(PPN)176099646 035 $a(EXLCZ)993710000000078552 100 $a20131114d2014 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aStatistical Modeling and Computation /$fby Dirk P. Kroese, Joshua C.C. Chan 205 $a1st ed. 2014. 210 1$aNew York, NY :$cSpringer New York :$cImprint: Springer,$d2014. 215 $a1 online resource (XX, 400 p. 114 illus., 8 illus. in color.)$conline resource 300 $aBibliographic Level Mode of Issuance: Monograph 311 08$a1-4614-8774-9 320 $aIncludes bibliographical references and index. 327 $aProbability Models -- Random Variables and Probability Distributions -- Joint Distributions -- Common Statistical Models -- Statistical Inference -- Likelihood -- Monte Carlo Sampling -- Bayesian Inference -- Generalized Linear Models -- Dependent Data Models -- State Space Models -- References -- Solutions -- MATLAB Primer -- Mathematical Supplement -- Index. 330 $aThis textbook on statistical modeling and statistical inference will assist advanced undergraduate and graduate students. Statistical Modeling and Computation provides a unique introduction to modern Statistics from both classical and Bayesian perspectives. It also offers an integrated treatment of Mathematical Statistics and modern statistical computation, emphasizing statistical modeling, computational techniques, and applications. Each of the three parts will cover topics essential to university courses. Part I covers the fundamentals of probability theory. In Part II, the authors introduce a wide variety of classical models that include, among others, linear regression and ANOVA models. In Part III, the authors address the statistical analysis and computation of various advanced models, such as generalized linear, state-space and Gaussian models. Particular attention is paid to fast Monte Carlo techniques for Bayesian inference on these models. Throughout the book the authors include a large number of illustrative examples and solved problems. The book also features a section with solutions, an appendix that serves as a MATLAB primer, and a mathematical supplement. 606 $aMathematical statistics$xData processing 606 $aBiometry 606 $aStatistics 606 $aStatistics and Computing 606 $aBiostatistics 606 $aStatistical Theory and Methods 615 0$aMathematical statistics$xData processing. 615 0$aBiometry. 615 0$aStatistics. 615 14$aStatistics and Computing. 615 24$aBiostatistics. 615 24$aStatistical Theory and Methods. 676 $a519.5 700 $aKroese$b Dirk P$4aut$4http://id.loc.gov/vocabulary/relators/aut$0522154 702 $aC.C. Chan$b Joshua$4aut$4http://id.loc.gov/vocabulary/relators/aut 906 $aBOOK 912 $a9910300148003321 996 $aStatistical modeling and computation$91410601 997 $aUNINA 999 $aThis Record contains information from the Harvard Library Bibliographic Dataset, which is provided by the Harvard Library under its Bibliographic Dataset Use Terms and includes data made available by, among others the Library of Congress