LEADER 03204nam 22006135 450 001 9910300144603321 005 20251204110316.0 010 $a3-642-39386-1 024 7 $a10.1007/978-3-642-39386-0 035 $a(CKB)3710000000088130 035 $a(SSID)ssj0001175781 035 $a(PQKBManifestationID)11760502 035 $a(PQKBTitleCode)TC0001175781 035 $a(PQKBWorkID)11139841 035 $a(PQKB)10073408 035 $a(MiAaPQ)EBC1697966 035 $a(DE-He213)978-3-642-39386-0 035 $a(PPN)176748202 035 $a(EXLCZ)993710000000088130 100 $a20140206d2014 u| 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt 182 $cc 183 $acr 200 14$aThe Concept of Stability in Numerical Mathematics /$fby Wolfgang Hackbusch 205 $a1st ed. 2014. 210 1$aBerlin, Heidelberg :$cSpringer Berlin Heidelberg :$cImprint: Springer,$d2014. 215 $a1 online resource (202 pages) $cillustrations 225 1 $aSpringer Series in Computational Mathematics,$x2198-3712 ;$v45 300 $aBibliographic Level Mode of Issuance: Monograph 311 08$a3-642-39385-3 320 $aIncludes bibliographical references at the end of each chapters and index. 327 $aPreface -- Introduction -- Stability of Finite Algorithms -- Quadrature -- Interpolation -- Ordinary Differential Equations -- Instationary Partial Difference Equations -- Stability for Discretisations of Elliptic Problems -- Stability for Discretisations of Integral Equations -- Index. 330 $aIn this book, the author compares the meaning of stability in different subfields of numerical mathematics.  Concept of Stability in numerical mathematics opens by examining the stability of finite algorithms. A more precise definition of stability holds for quadrature and interpolation methods, which the following chapters focus on. The discussion then progresses to the numerical treatment of ordinary differential equations (ODEs). While one-step methods for ODEs are always stable, this is not the case for hyperbolic or parabolic differential equations, which are investigated next. The final chapters discuss stability for discretisations of elliptic differential equations and integral equations. In comparison among the subfields we discuss the practical importance of stability and the possible conflict between higher consistency order and stability.  . 410 0$aSpringer Series in Computational Mathematics,$x2198-3712 ;$v45 606 $aNumerical analysis 606 $aDifferential equations 606 $aIntegral equations 606 $aNumerical Analysis 606 $aDifferential Equations 606 $aIntegral Equations 615 0$aNumerical analysis. 615 0$aDifferential equations. 615 0$aIntegral equations. 615 14$aNumerical Analysis. 615 24$aDifferential Equations. 615 24$aIntegral Equations. 676 $a518 700 $aHackbusch$b Wolfgang$4aut$4http://id.loc.gov/vocabulary/relators/aut$051792 906 $aBOOK 912 $a9910300144603321 996 $aConcept of stability in numerical mathematics$9821048 997 $aUNINA